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FOREWORD
The Organizing Committee is exceptionally pleased to welcome all the participants, who have travelled from
Austria, Belgium, Brazil, Germany, Israel, Italy, Japan, the Netherlands, Portugal, Russia, Serbia, Slovenia, Spain,
and the United States of America to the city of Porto, to attend this unique conference held in the Faculty of Sciences
of Porto’s University, between the 5th and the 7th of September, 2019.

Geometrias’19 is the 5th edition of the International Conferences that have been organized, since 2013, by Aproged 
(the Portuguese Association of Geometry and Drawing Teachers), with the aim of expanding a network of common 
interests and knowledge between academics, artists, researchers, scientists and students, fostering opportunities for 
them to share their investigations and practical experiments related to the theme proposed for each edition, closely 
connected to Geometry through a broad panorama of topics.
The first conference, Geometrias’13, took place in 2013, in the Faculty of Architecture of Porto’s University; and
Geometrias’14 at ISCTE in the University Institute of Lisbon, with New challenges on practice, researching and
teaching Geometries and Drawing as engaging theme. The 2015’s edition, held in Lisbon’s’ Lusíada University, was a 
joint conference between Geometrias and the Brazilian Graphica, gathered under the theme Trends on Graphic Think-
ing.  Geometrias’17 was held in the Department of Architecture of Coimbra’s University with Thinking, Drawing, 
Modelling as leitmotif. 
In 2019, Geometrias: Polyhedra and Beyond is being held in the Department of Mathematics of the Faculty of Sciences 
of Porto’s University, with the intent of fostering interdisciplinary discussions and connections between theoretical 
researches and practical studies on polyhedra and geometric structures and its applications in architecture, arts, com-
puter science, crystallography, design, education, engineering, mathematics, materials’ science and other related fields 
of study, all of which we believe might enrich each other and renew mutual interests and synergies through networks 
of common inspirations.
The program of Geometrias'19 includes 5 lectures from the outstanding Keynote Speakers Javier Barrallo, Henry 
Segerman, Manuel Arala Chaves, Michael Hansmeyer and Rinus Roelofs, who will share with us some of their
remarkable researches related to the conference’s leitmotif.
In addition to each of the Plenary Sessions, the authors that have travelled to Porto will have ample opportunity to 
orally present and discuss their researches (17 papers and 7 posters), during specific sessions in each of the days of the 
conference. These presentations were selected in accordance to the reviewing process that the Scientific Committee 
underwent in response to the Call for Abstracts, that ended in March 2019. 
In the afternoon of the last day, Javier Barrallo and Rinus Roelofs will certainly give the participants of each of their 
Workshops, more enjoyable reasons to remember this conference. 
Along with unique opportunities to learn and share knowledge, the additional activities of the social program and 
many enjoyable moments to socialize will certainly provide everyone great opportunities to learn and enhance fruitful 
personal connections and friendly moments that, hopefully, all the participants will pleasantly remember.

The Organizing Committee would like to express our deepest gratitude to The Faculty of Sciences and the Center of 
Mathematics of Porto’s University, without whom this conference would not have been possible; to FCT - Fundação
para a Ciência e a Tecnologia for their significant support; to every member of the Scientific Committee for their 
incomparable commitment in the evaluation of all the submissions; and to all the Keynote Speakers, Sessions
Moderators, Speakers and Authors, for their exceptional contribution to the conference scientific program. A word 
of recognition still to all the collaborators who, in some way, contributed to the accomplishment of this conference.
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We hope that the conference program and the additional activities we prepared match the expectations of all the 
participants and that many productive opportunities occur to everyone enhance their personal, academic and
professional development. We wish that everyone will be able to learn within and beyond their fields of interest, with 
noteworthy repercussions and positive memories of the people and events gathered in the beautiful city of Porto,
that welcomes everyone, as much as the organizers, with wide open arms.
As a symbolic gesture of the fruitful and close connections that we wish to foster during these three days, we offer 
all the participants a printed model of the first stellation of the rhombic dodecahedron, the interesting space-filling 
polyhedron also known as Escher’s solid.

A final remark to denote that this Book of Abstracts was conceived as a record of the events that will take place in 
the three days of the conference and also as a guide for each of the sessions, given that the sequence of chapters and 
abstracts follow closely the presentations scheduled in the conference program.
Following the conference, a number of presentations will be selected to develop into full-papers, to be included in a 
book entitled “Polyhedra and Beyond. Outcomes of the Geometrias’19 Conference”, to be published in a near future. 

The Organizing Committee wishes everybody a great time during the conference and a very pleasant stay in the city 
of Porto!

Helena Mena Matos, Faculdade de Ciências da Universidade do Porto
João Pedro Xavier, Faculdade de Arquitectura da Universidade do Porto
Vera Viana, Aproged and CEAU - Faculdade de Arquitectura da Universidade do Porto.
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ACKNOWLEDGMENT TO THE SCIENTIFIC COMMITTEE
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USEFUL INFORMATION
The Scientific Program of the Geometrias’19 Conference will be held in the Department of Mathematics of Faculdade 
de Ciências da Universidade do Porto1.
The participants’ reception occurs on the 5th of September, from 09h00 to 13h00.
Each participant will be given a Conference ticket with his/her identification.
We ask everyone to wear it, at all times, during the conference.

All the presentations will take place in Room 2.19 in the second floor of Building FC1 (Departamento de Matemática).
Each Plenary Session (PS) has a slot of 60 minutes for presentation and debate.
Each of the Paper Presentations (PP) has a period of 20 minutes; Poster Presentations (PT), 07 minutes.
At the end of each Session of Paper and Poster Presentations, a short period is planned for debate and discussion.
The 5 minutes interval at the end of each presentation is scheduled for the preparation of the next presentation.
The workshops scheduled for the 7th of September will occur in Rooms 2.19 and 2.29, opposite to each other.

The Participants that have registered for the Social Program can take the Afterhours Tour to Torre dos Clérigos, any 
day between the 04th and the 07th of September, from 19h00 to 23h00.
On the 5th of September, the concert of Orquestra XXI at Casa da Música2 begins at 21h00.
Founded in 2013, Orquestra XXI is a project that brings together young Portuguese musicians living abroad with the 
twofold objective of keeping a strong link between them and their native country, and providing outstanding musical 
moments to the most diverse audiences.
The Conference dinner will take place on the 6th of September, at Restaurante Terrella, near Casa da Música3, after the 
guided tour to Casa da Música, scheduled for 19h00.

Following the conference, the authors of a limited number of presentations will be invited to develop their research 
into full papers, for publication in a contributed volume, to be proposed for publication to Springer.
This selection will be accomplished by the Organizing Committee on the basis of the extended abstract and its oral
presentation at the conference.
More details about this publication will be announced in a near future.

CONFERENCE WEBPAGE:
http://www.aproged.pt/geometrias19.html

WI-FI ACCESS:
username:  dmat.wifi.6@fc.up.pt  
password: Geometrias19

1 Rua do Campo Alegre, 687 4169-007 Porto.
2 Avenida da Boavista, 604-610. 4149-071 Porto.
3 Rua Ofélia Diogo da Costa 105 A. 4149-071 Porto. 
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CREATING POLYHEDRA IN SHAPE OF A STAR
BASED ON CATALAN SOLIDS USING MODULAR ORIGAMI
Henriette-Sophie Lipschütz1, Ulrich Reitebuch2 and Konrad Polthier3

KEYWORDS: Origami, Platonic Solids, Archimedean Solids, Catalan Solids.

INTRODUCTION
Every polytope can be stacked, i.e. every face of the polytope can be equipped by a pyramid. Especially polytopes 
consisting of regular faces, such as the Platonic solids or the Archimedean solids, yield beautiful star-shaped polyhedra
after placing a a pyramid on each face. The regularity resp. the symmetry of the faces refers to choosing regular
triangles or isosceles triangles as faces of the pyramids. In modular origami, there are several modules presented that 
can be used to create such star-shaped objects as P. Bascetta did, with a module simple to fold and easily to put up [01].
Since the faces of the Platonic solids and the faces of the Archimedean solids are regular, it is possible to construct a 
regular pyramid having a face of the solid as base and isosceles triangles as faces. This is not true for the Archimedean 
duals or Catalan solids. In the abstract, we investigate the Catalan solids due to the pyramids the faces can be equipped 
with and present different origami modules to create a star-shaped polyhedron.

RESEARCH
P. Bascetta created a module in the shape of a rhombus, that is subdivided into two isosceles triangles by folding along 
the shorter diagonal [01]. The shorter diagonal replaces one of the edges of the chosen Platonic solid. Every edge lies 
in two neighboring faces. Therefore, each of the triangles belongs to one of the pyramids over these faces. Hence, the 
number of edges of the solid is equal to the number of modules needed to create a star-shaped polyhedron. All the 
Platonic solids can be turned into star-shaped polyhedra using Bascetta’s module. Considering the dodecahedron, it 
stands out that the faces of the pyramids lie in the same plane as the pentagon they are adjacent to. This is not the case 
for the other Platonic solids - on one hand, because the dihedral angles of the tetrahedron and the cube are smaller or 
equal to π. Therefore, their faces do not give a proper pyramid. On the other hand, the angles that arise by putting up 
several Bascetta modules are fixed, because the angle opposite to the shorter diagonal is equal to π/4. But the folding 
principle of Bascetta can be used to create a module resulting in pyramids fulfilling the observation made above. As 
discussed in [02], the Bascetta module is not suitable for all Archimedean solids, since joining eight modules yields a 
flat octagon or, in the case of a decagon, the joined modules over the decagon give some hyperbolically shaped region.
A module by M. Mukhopadhyay has the shape of a rhombus and is folded along its shorter diagonal, too [03]. This 
module yields an angle opposite the shorter diagonal which is smaller than the one in Bascetta's module, it can be used 
to build a pyramid based on an octagon, but not to build a pyramid based on a decagon. The Mukho-padhyay module 
does not fulfil the property of extending the original faces.
Both ways of folding can be transferred to other paper formats. In case of the Bascetta module, the theoretical
construction of dividing a given angle between 0 and π/2 twice into halves is applied, to create the border of the
module and the flaps that are used to join the modules. In practice, the revised Bascetta module is not well-suitable 
to build pyramids based on octagons, since the modules are prone to fall apart. Here, the Mukhopadhyay module is 
better suitable to work with. The Mukhopadhyay module can be revised in such a way that all Archimedean solids

1 Freie Universität, Berlin, Germany (henriette.lipschuetz@fu-berlin.de)
2 Freie Universität, Berlin, Germany (ulrich.reitebuch@fu-berlin.de)
3 Freie Universität, Berlin, Germany (konrad.polthier@fu-berlin.de)
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can be equipped  with pyramids over their faces. Since the edges of an
Archimedean solid are, in general, contained in two different types of
 faces, it depends on the faces how the original face can be extended  (as 
in case of the truncated cube, for instance). Neighboring faces make a 
dihedral angle. Considering the plane containing one of the faces, the 
plane and the second face make an angle such that the sum is equal to 
π. The angles made by neighboring bases will determine if extending
the faces results in a pyramid (for instance, in case of the truncated
dodecahedron - building the appropriate pyramid over a triangle does 
not lead to a pyramid over the neighboring decagon). In general, it is 
possible to construct polyhedra that are star-shaped from a more artistic 
point of view by decreasing the angle opposite to the shorter diagonal, as 
done in case of the so-called Herrnhuter star (see Fig. 1) or the so called
Marienberger star which is a stacked dodecahedron.

Fig. 1 - A Herrnhuter star
(a stacked rhombicuboctahedron).

The basic idea described above also fits to the Johnson solids. Of course, the 
application of the described procedure yields stacked polytopes, but one 
might be more interested in more spherical-shaped results, since some of 
the Johnson solids are not (the pentagonal rotunda for instance). Hence, 
the natural question arises if it is possible to handle the Archimedean
duals resp. the Catalan solids. Opposite to the so far named families of 
polytopes, every Catalan solid consists of exactly one type of face. The
faces are not regular, neither due to the side length, nor to the angles.
Extending the faces of a Catalan solid until they meet results in a pyramid,
since the faces arising intersect in exactly one point - the apex of the 
pyramid (see Fig. 2). We are going to present different origami modules
based on the abovementioned Mukhopadhyay module and a module
created by M. Mukerji that gives a quadrilateral pyramid over a
rhombical base [04].

Fig. 2 - The pentagonal icositetrahedron equipped 
with pyramids providing the original faces.

Our investigation contains also the consider-
ation of the constructability of the achieved 
pyramid faces with respect to the origami 
axioms as listed in [05]: we are evolving a
folding routine starting with a chosen edge 
length, so all folding steps depend solely 
on the edge length of the chosen solid. For
instance, considering the rhombic dodecahe-
dron, the Mukerji module can be modified 
in a suitable way to a pyramid having faces
with edge length a and 2√3a (Fig. 3).

Fig. 3 - Sketch of unfolded module of the modified 
Mukerji module, left: face of the pyramid, right:
shaded regions show the faces of the pyramid.
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CONCLUSIONS
In this extended abstract, we described a family of star-shaped polyhedra based on the Catalan solids. Due to the 
close relation of the Catalan solids and the Archimedean solids and, therefore, to the Platonic solids as well, an
approach similar to one based on recent research ([02]) was chosen. Inspired by the observations made by considering
the Platonic solids and the Archimedean solids, we investigated if the faces of the Catalan solids can be provided
into pyramids over neighboring faces. Since this is true, we constructed and presented different approaches by
modifying known origami modules to create models of the star-shaped Catalan solids. Furthermore, we made sure 
that the presented modules can be folded given the edge length of the chosen solid.

REFERENCES
[01] Bascetta, P. and Roger Weber, Y. Bascettas Origami Stern, Q-Verlag Berlin, 2007
[02] Lipschütz, H.-S. and Polthier, K. Archimedean Stars, submitted to Bridges 2019
[03] Mukhopadhyay, M. http://www.origamee.net/diagrams/misc/isos.html
[04] Mukerji, M. https://www.youtube.com/watch?v=9W8f57xju3o
[05] King, J. Origami-Constructible Numbers, 2004, https://pdfs.seman-ticscholar.org/673d/2dce70a6d7a456b6c70b16a02a1243

e75a73.pdf
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VITTORIO GIORGINI’S ARCHITECTURAL EXPERIMENTATIONS
AT THE DAWN OF PARAMETRIC MODELLING
Denise Ulivieri1, Filippo Iardella2 and Marco Giorgio Bevilacqua3

KEYWORDS: Vittorio Giorgini, Symmetrical and Asymmetrical Meshes.

INTRODUCTION
Vittorio Giorgini (1926-2010), a space-morphologist architect, grew in Florence, where he attended the School of 
Architecture. From the earliest years of his academic studies, he showed interest in developing a research on natural 
models with the aim of applying them to architecture, in order to obtain more efficient complex systems. His studies 
focused, therefore, on the analysis of membrane structures, tensile structures and on the elaboration of tetrahedral 
and octahedral structural meshes. He experimented spatial meshes which contract, expand, recompose and adapt to 
tensions, as it happens in the nervous, circulatory or muscular systems.
Vittorio Giorgini committed to the systemic vision of contemporary scientific thought - “the structure of a system
is the order in which the elements are organized” [01: 211] - to develop a dynamic, articulated, sophisticated
architecture, open in all the directions, where geometric principles, structural and functional needs are perfectly
integrated.

RESEARCH
Vittorio Giorgini could be considered as a pioneer, as he fully understood, along with a few others, what Thomas 
S. Kuhn [02] defines as a “new paradigm”, that is, the transition to a new vision of the physical universe, in which
instability and fluctuations are at the origin of the incredible variety and richness of forms, and structures that could 
be seen around us in the world [03].
He thought about a different way of understanding architecture, based on the search for integration with nature, 
which, however, is not solved in the simple imitation of the forms of the organic world, but in the design of spaces 
suitable for Man’s life.
Until the first half of the 19th century, Euclidean geometry was the only instrument used for describing nature, 
but the advent of non-Euclidean geometry led to a “fundamental rethinking of the meaning of space-time, matter 
and energy, information and noise” [04], which inevitably led to the study of new ways of conceiving and realizing
architecture. 
According to Giorgini, geometry is “an analysis, verification and operational tool” [01: 193]. He considered the study 
of geometry as the basis of static and structure. “Geometry is the basic order from which the models are developed” 
and his attempt was to approach models of nature that have “efficient mechanisms of self-control”.
 Giorgini’s world is, therefore, “post-Euclidean”, a complex and continuous reality where natural evolution proceeds 
“systematically with dynamic transformations, adaptations and continuous retroactions” [05: 39], a dynamic and
interrelated reality that, since the 1950s, he investigated also through topological geometry. He chose the term
“Spatiology” for defining his studies on morphology, “the study of geometry as a mathematical discipline and
‘backbone’ of statics, (systemic) taxonomy, and technology” [01: 193]. As a morphologist-spatiologist architect, he 

1 Department of Civilisations and Forms of Knowledge, University of Pisa, Italy (denise.ulivieri@unipi.it)
2 Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Italy (iardella.filippo@gmail.com)
3 Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Italy (mg.bevilacqua@ing.unipi.it
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created in 1962 the Saldarini House in the Gulf of Baratti (Tuscany), also known as ‘Casa Balena’ (Whale House)
or ‘Casa Dinosauro’ (Dinosaur House) (Fig. 1), a “fanciful morphology” [05] where the “topological notions of
transformation and continuity intertwine with the architectural topics of flexibility, fluidity and dynamism” [06: 130]. 
Giorgini analyzed “the transitions from the linear (the straight line), to the bent (broken) up to the curved, both 
for lines and for surfaces” and “meshes generated by different geometries and transformed, symmetrically and
asymmetrically, following the forces action” [01: 199] (Fig. 2). On the other hand, from the topological point of view, 
“forms are the product of the continuous transformation of other forms”, and, as such, the topology “considers a
brick and a billiard ball as if they had the same shape, and even a teacup or a disk”.

Fig. 2 - Study for the deformation of a mesh (Courtesy B.A.Co. - Vittorio Giorgini Archive).

Giorgini agreed with the theory by the British biologist and mathematician D’Arcy Wentworth Thompson, that 
“the shape of an object is a diagram of forces”; he then applied Thompson’s “theory of transformations” [07: 290-
349] to symmetrical and asymmetrical meshes, analysing the structural behaviour and quantifying the forces that 
modify the original model. Vittorio Giorgini’s studies, such as Le Corbusier’s research on hyperbolic geometry, 
the technological and formal solutions of Richard Buckminster Fuller and Frei Otto, “came out of the renaissance 
static perspective mental framework and joined Einstein’s curved space, the folded space by Gilles Deleuze or the
topologically deformed space described by René Thom” [08: 55].
Leaving aside the orthogonality of the usual space, Giorgini developed a “ante-litteram” morphing process, based 
on the rectification of curved lines. Giorgini’s pioneering and unrealized projects of his American period (1969-
1996), mostly characterized by the use of tetrahedral and octahedral structures, were branded as utopian and absurd.
However, he firmly believed in innovation and technology as tools for reducing the distance between Man and nature.

Fig. 1 - Plan drawings of the Saldarini House (Courtesy B.A.Co. - Vittorio Giorgini Archive).
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At the Biennale of Venice in 1978, he declared, in fact, that: “New instruments will allow for incremental and infinite 
spatial variants with possibilities and economies never thought before”. The architectural archive of Giorgini still saves 
many of his projects, models, sketches, notebooks, design objects, photographs which tell us his tormented life of 
research.
Nowadays, the advent of the electronic paradigm makes representing Giorgini’s themes possible. Following what was 
presented at the Nexus Conference in Pisa and has now been published in the issue of  the Nexus Network Journal
[09], the aim of this research is to demonstrate how pioneering Giorgini was, anticipating several years of recent
experimentation in the field of parametric modelling and computational design. In particular, the research focuses 
on the case study of symmetrical geometric meshes which, through dynamic transformation, i.e. the application of
forces, change into asymmetric meshes as it happens in nature. 

 Fig. 3 - Liberty Community Centre. On the left, concept drawing; on the right, study model (Courtesy B.A.Co. - Vittorio Giorgini Archive).

Giorgini, in fact, tried to define static diagrams in order to quantify the forces and the reasons that transformed the 
original symmetrical model, with the aim of experimenting more efficient and economic design techniques.
Giorgini’s meshes contract, expand, reform, move in every direction, composing different symmetrical and
asymmetrical geometries, adapting themselves to tensions such as the nervous or circulatory systems tissues.
However, he pointed out that “while in nature it is simple for a mesh to become asymmetrical, with our techniques
it is difficult and expensive” [01: 214]. Giorgini modelled his meshes in an intuitive and experimental way, as in the 
case of Casa Saldarini or the Liberty project, where meshes were modelled manually, in order to obtain the desired 
curvature. Giorgini understood that only with the help of technology and electronic instruments, which in those years 
saw the first slight beginnings, it is possible to obtain a mathematical control of meshes.
 

Fig. 4 - Octa-frame System. Hydropolis. East Elevation drawing (Courtesy B.A.Co. - Vittorio Giorgini Archive).
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Giorgini’s experimentations have, therefore, been developed in current software of parametric modelling. In
particular, the experimentation will focus on the modelling of double-curved asymmetric surface systems with
topological morphological characteristics, such as the Saldarini House and the unfinished project of the Liberty
Community Centre (State of New York, 1976-1979 ) (Fig. 3), up to the unrealized projects designed for Manhattan,
Hydropolis (1981-1982) (Fig. 4) and Genesis (1984) (Fig. 5), based on Giorgini’s Octa Frame System, a self-bearing
octahedral-tetrahedral base module. Nowadays, modelling in a digital environment allows us to develop a critical
analysis of Giorgini’s work, verifying in particular the limits induced by the lack of specific software and, at the same 
time, a better understanding of the peculiar characteristics within the context of his cultural references.

Fig. 5 - Octa-frame System. Genesis. Model (Courtesy B.A.Co. - Vittorio Giorgini Archive).

CONCLUSIONS
The aim of this research is to give back to Vittorio Giorgini the role of pioneer that he deserves. In this sense, a 
strong reproposition of the actuality of his work and the different sensibility from the general mainstream of his 
time, through dynamic models and methods of investigations and design, means re-reading, analysing and critically
evaluating his design thinking. 
Giorgini surprises us for his cultural and social relationships: he was a friend of André Bloc and of the sculptor
Isamu Noguchi; he met Richard Buckminster Fuller for discussing about architecture; he was also a good friend of 
Sebastián Matta and of his son Gordon Matta-Clark, a colleague and a friend of John M. Johansen. Giorgini met Peter 
Eisenman at the Pratt Institute where Giorgini teached until 1996, before coming back to Italy.
Giorgini foresaw the enormous creative possibilities offered by the digital language, in a certain sense, demonstrating
to have a ‘parametric mentality’, which he couldn’t develop, due to the lack of adequate tools and a series of other 
personal reasons: the first personal computers arrived in the 1980s and, in 1995, a serious eye disease profoundly left 
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a mark in the last part of the life of Giorgini, who declared, with profound bitterness, that he had been left very alone 
and that his work had never generated great interest from critics. 

“My research has remained fruitless to this day. What remains is only an intention, a concept, a supposition, 
but no confirmation.” [10].
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GEODESIC STRUCTURES:
DOUBLE CURVATURE TRIANGULATED MESHES
Gianluca Stasi1

KEYWORDS: Geodesic Structures, Spherical Geometry, Triangulated Meshes.

INTRODUCTION
Geodesic lines represent the shortest distance between two points on a curved surface. Often, however, the
components of geodesic structures don’t correspond with the arcs drawn on the surface (generically spherical) by
the geodesic lines between their vertexes. Instead, with different approximations, they follow the chords - straight lines 
that pass inside the generator solid - forming triangular faces.
For this reason, geodesic structures are considered triangulated structures. Nevertheless these triangles do not belong 
to a planar system, but to a spherical geometric system.
Working on them with the axioms of Euclidean planar geometry leads to the appearance of geometric incongruities,
which result in assembly problems and construction pathologies. It is necessary to use specific tools to work on 
“double curvature triangulated meshes” geometry and adapt them to the peculiarities of the different construction 
methods with which geodesic structures can be implemented.

RESEARCH
In the first part of the 20th century, Walther Bauersfeld and Richard Buckminster Fuller introduced to the world 
the geodesic technology for dome construction. Geodesic structures make possible to cover large spans without
intermediate supports and with a high robustness, compared to the weight and characteristics of the constituent
materials. However, the history of the application of those technologies is plagued by recurrent pathologies, due to 
approaches and work methods that, today still, continue to produce them.
As Popko [01] warns: “It is easy to evenly divide the circumference of a circle on a computer to any level of precision. 
It’s not easy to evenly subdivide spheres, computer or not”. There are, therefore, a great variety of strategies or methods 
of subdivision that, starting from different premises, can be used for the distribution of points on a sphere. The values 
thus obtained were disseminated in a context in which there was widespread belief that only one geodesic geometry 
that provides fixed values for each frequency of subdivision exists.
By presenting different datasets without explaining the different methods used, the emergence of a discussion, still 
active today, on the accuracy of these calculations was promoted. To this accuracy were attributed, and are today
attributed, the assembly problems and recurrent construction pathologies in these systems. In reality, the different 
data sets correspond to the application of different subdivision strategies, and the origin of the inconsistencies must 
be sought in other factors.
Geodesic structures are generally defined as “triangulated meshes”. In fact, three chords joining three adjacent vertexes 
form a triangle. The illustrations used in the existing bibliography contributed to this idea, by representing the geodesic
systems from the chords, and not from the arches which define the corresponding spherical triangles. However, in the 
case of geodesic meshes, the measurement of the three sides is not sufficient to characterize those triangles, since they 
do not belong to an Euclidean plane. Although three points always define a plane, the triangles defined by the chords 
still belong to a spherical system and, therefore, for their geometric definition, other data is needed.

1 Italy / Spain (luca@ctrlz.net)
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Some of these data refer to the geometrical definition of a “double curvature triangulated meshes”, others must be 
defined in a second stage for the specific configuration of each construction system.
A given geodesic geometry cannot be applied to different construction methods without adapting it to their charac-
teristics and peculiarities: each of them configures its own geometry. For this reason, many of the data and concepts 
necessary for the definition of specific construction methods are not found in the existing bibliography.
During the last ten years, the author has integrated the development of theoretical research on the subject, with 
the realization of practical experiences of participative, real scale selfconstruction of the proposed models. Their
realization provided different communities with equipment and infrastructure they needed, and, at the same time, 
provided an opportunity to check the developed models, collect data for further improvements, and endorse the
technology transfering protocols used for the inclusion of the local community in the involved processes. These
experiences highlighted the need to consider and define a wide range of new concepts and refinements, both for
the analysis of construction methods applicable to geodesic structures, and for the different geodesic geometries
 that generate them.
The constructive method popularly known as GoodKarma is one of the most widespread for the self-construction of 
geodesic structures, due to the existence of several informal manuals, that, starting with self-edited booklets in the 
1970s, are today disseminated in different formats through the Internet. They are extremely popular among dome 
enthusiasts.
This method can be used as an example to explain the problems that arise when adapting generic geodesic geometry 
to specific methods. As shown in Fig. 1, the GoodKarma method organizes wooden modules around each vertex.

Fig. 1 - GoodKarma constructive system. Hemispheric structure, module and vertex detail.

In the author’s researches, for each triangle of a given geodesic subdivision mesh, the triangle formed by the three 
chords is named Principal Tetrahedron Triangle [PTT], and the triangles that each one of the chords forms with the 
center of the spherical system to which they belong, is named Axial Tetrahedron Triangle [ATT].
Fig. 2 shows how to configure each of the modules. Its components are aligned with the three ATT, so that their top 
faces do not belong to the PTT, but to a plane containing the chord and perpendicular to its corresponding ATT. To 
execute the cuts of component’s ends, compound angles will be used. One of the constituent angles will be the Axial 
Angle, while the other is not the Internal Angle [IA], but the Principal OrthoDihedral Angle [POA] that is formed 
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on this new plane. Fig. 2 also describes how, by definition, each PTT has three IA and six POA. A set of two of these 
six angles is assigned to each of the three components of each module. Being oriented toward a spherical and, thus, 
convex surface, the value of the POA is always higher than that of the AI that is formed by the same vertex. Using the 
IA instead of the POA results in the introduction of structural tensions that are, without any doubt, the main cause of 
the building and maintenance problems imputed to this construction system.

Fig. 2 - Internal Angles (red), Axial Angles (green)
and Principal OrthoDihedral Angles (blue).

As the preparation of each triangular
module requires six angles, and in 
each vertex of the system converge 
five to six modules, the introduced 
deviations can have significant
consequences on the geometry of 
the whole structure. The rotation 
of the components upper face, with
respect to the PTT, depends of 
another angle that is not referenced 
in the bibliography. The Dihedral 
Angle formed between the PTT
being analyzed, and those with 
which it shares one side, isn’t, in fact, 
a functional data to this calculation. 
It must be noted that the ATT plane 
that each chord  forms with the
center of the spherical system does 
not divide  the corresponding Dihe-
dral Angle in equal parts.
Fig. 3 illustrates the definition of the Tetrahedral Dihedral Angle [TDA] as the angle between a PTT and each one of 
its three ATT.

Fig. 3 - Dihedral Angle (green) and Tetrahedral Dihedral Angle (violet).
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A widespread error is to work on a spherical system as if it were a planar system, applying the properties of
Euclidean geometry to it. Unlike a triangle designed on a Euclidean plane, the sum of the three POA of a spherical 
triangle should not only not be, but also cannot be 180º - in fact, it has to be greater than this.
For the calculation of the POA in the three vertexes and, consequently, for the design of the three-dimensional
modules of the GoodKarma method, one doesn’t work in the same plane, but in three different planes, because, in spite 
of representing a geodesic system as a series of plane facets, one continues to work on a spherical surface in which the 
axioms of Euclidean geometry are not valid.
As summarized in Table 1, comparing the data obtained by applying the concepts and operators introduced by the 
author’s researches, with the ones proposed in the informal manuals of this construction method, we can see how 80% 
of the cuts would be made using different angles.

In addition, comparing the manuals data in Table 2 with the IA of the corresponding PTT, the most striking result is 
that, not only the values do not agree but, in an unexpected way, the values of four of the cutting angles reported in the 
manuals turn out to be smaller with respect to their respective AI. Being that the PTT is oriented towards the surface 
of the sphere, and being that surface convex by definition, this turns out to be simply impossible.
Comparing the POA with the manuals, 80% of the cuts would be made with a different angle. Comparing the POA 
with the IA, this deviation would fall to 53%, demonstrating that modifying the general geometry following the rules 
of planar geometry can lead to the creation of even more geometrical incongruities.

Table 1 - Comparison between Principal OrthoDihedral Angles and Manual’s Angles
for the five PTTs of an “Icosahedron, ν4, equal chords subdivision method” geodesic mesh.
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Table 2 - Comparison between Internal Angles and Manual’s Angles
for the five PTTs of an “Icosahedron, ν4, equal chords subdivision method” geodesic mesh.

CONCLUSIONS
Just as there is no single geodesic geometry, there is no single construction method for its implementation. To
understand these multiplicities, it is necessary to consider the geometric peculiarities of the “double curvature
triangulated meshes” and configure specific tools to work on their definition.
At the same time, in order to define the variety of construction methods that exist, it is necessary to approach geodesic 
geometry with a new focus, and analyze the relationships that are established between a given geometric configuration 
and the specific geometric characteristics of each construction method applicable for real scale structures.
The existing methods of representation and definitions can easily lead to the error of working on geodesic structures 
as if they were a set of planar triangles. The new approach proposed in the author’s research, with the definition of 
new operators and concepts such as POA and TDA, not only allows for a new reading of the existing methods but,
as demonstrated by numerous experiences carried out in the field, this type of approximation allows the use of new
construction methods, such as “Brujodésico” or “Zdésico”, easily transferable to communities without previous
knowledge of geodesic structures and implementable in low-tech environments.
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GEOMETRY AND EFFICIENCY IN THE JOINTS OF DEPLOYABLE STRUCTURES
Adolfo Pérez Egea1, Pedro Miguel Jiménez Vicario2, Pedro García Martínez3,
Manuel Alejandro Ródenas López4 and Martino Peña Fernández-Serrano5
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1. INTRODUCTION
The field of deployable structures underwent significant progress in the latter half of the 20th Century, thanks in part 
to aeronautical advances resulting from the two world wars (García et al., 2018).
Spain’s Emilio Pérez Piñero is considered to be one of the pioneers in deployable structures. His work interested
architects globally, such as Fuller and Candela, and in 1961, he patented his prototype in Spain (Piñero, 1961), as well 
as in America (Piñero, 1965). Fellow Spaniard Félix Escrig (1984) is regarded 
as the person who took on Piñero’s research findings and developed them 
even further.
Such structural systems are essentially formed of rigid rods and articulated
joints. Due to the great number of joints inherent in these structures,
designing these elements has been a fundamental issue, so it is quite
understandable that the invention process behind it is patented. From the 
last quarter of the 20th Century onwards, the application of deployable
structures has increased significantly. Their ability for changing volume 
has allowed them6 to be used in situations where load-bearing is not an
important factor, such as in the construction of spatial modules (in the
absence of gravity), furniture elements, or in the production of toys made 
popular by Charles Hoberman (1995).
Consequently, the materials used to make these joints have also changed. 
Piñero used, initially, aluminium to build the joints and rods. At that time 
in Spain, the only company able to build his designs was the aeronautical 
manufacturer CASA, whose technology was based on this material (Pérez 
and Pérez, 2016). With Hoberman’s toys, a thermostable polymer was used.
Nowadays, parametric design and digital manufacturing let us experiment 
with new methodologies and production processes that can be applied 
to these kinds of structures, where geometry performs an important role
(Fig. 1). New collaborative methods and ‘open source’ processes amplify 
these phenomena.

1 Universidad Politécnica de Cartagena, Cartagena, Spain (adolfo.perez@upct.es)
2 Universidad Politécnica de Cartagena, Cartagena, Spain (pedro.jimenez@upct.es)
3 Universidad Politécnica de Cartagena, Cartagena, Spain (pedro.garciamartinez@upct.es)
4 Universidad Politécnica de Cartagena, Cartagena, Spain (manuel.rodenas@upct.es)
5 Universidad Politécnica de Cartagena, Cartagena, Spain (martin.pena@upct.es)
6 The contributions made by Charles Hoberman to the field of deployable structures are numerous and varied. His main patents, ‘Reversibly
Expandable Three-Dimensional Structure’, ‘Radial Expansion/Retraction Truss Structure’, and ‘Reversibly Expandable Doubly Curved 
Truss Structure’ have had practical application in the development of toys, as well as in structural designs for architecture and engineering.
See [01]).

Fig. 1 - Joint created with parametric design
software and 3D printing. Authors’ image.
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2. AIM OF THE PAPER
In this document, we focus on the geometrical factors prevalent in the design and manufacturing processes of basic 
deployable structures using digital tools, as well as some of the main variables to consider in such processes. As a 
result, we offer a concise classification of the structures’ joints, specifically designed so they may be produced by 3D 
printing, particularly by fused deposition modelling (FDM). In addition, data is provided relating to the time and 
amount of material (ABS plastic) used in each case. Finally, we also describe criteria that can be considered when 
developing designs at a later stage, in accordance to the aforementioned.

3. DEFINITIONS
Studies, such as those by Hanaor and Levi (2001), lead us to remark that the descriptor ‘deployable’ encompasses very 
different kinds of deployable structures, including textile and inflatable ones. However, in this study, we will focus 
exclusively on those known as DLG (double layer grid), which combine rigid rods and articulated joints.

3.1 TYPES OF DEPLOYABLE STRUCTURES SYSTEMS STUDIED.
3.1.1 Tb systems.
The geometry of their basic module is similar to a tube bundle (Tb). Three or more rods gather in a central joint that 
connects them to each other. Piñero’s structures (1965) are based on this scheme.
3.1.2 Ss systems.
The basic module of these systems 
is obtained when combining pairs of 
rods gathered in a central joint, form-
ing a cross or a pair of scissors – hence 
the name Ss (‘scissors systems’). Félix 
Escrig described them in his 1984 
patent, generalising Piñero’s earlier 
conclusions.
Depending on the system type and 
the number of rods used, deployable
structures whose basic module adopts
different geometrical shapes could be
obtained. In this study, we will con-
sider up to a maximum of six rods 
in Tb systems and eight rods for Ss
systems, (Fig. 2).

3.2 TYPES OF JOINTS STUDIED AND NAMING CONVENTION.
Hereunder, we list the aspects we have studied and how these have been condensed into a code that allows us to clas-
sify and describe the joints in question:

 – Number of rods gathering in the joint (1,2,3... etc).
 – Type of system (Tb or Ss).
 – Position of the joint in relation to the module (1: end, 2: centre, 3: end with connection, and 4: end or centre)
 – Continuity of the rod in the joint:
<: Discontinuous rod, an element of the rod appears either side of the joint. 
/: Continuous rod, joints do not interrupt the rod.

 – Number of pieces integrated into the joint (1: joint made by one piece [continuous extrusion]; 2: joint made up 
of two pieces, etc.).

 – Direction of rods’ axes related to the geometrical centre of the knot (d: divergent; c: convergent).
 – Family: Design of the general geometry of the joint (A - F)

Fig. 2 - Classification of base modules according to the union of rods and joints,
Tb (Emilio Piñero) and Ss (Félix Escrig). Authors’ image.
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By way of example, a joint’s naming conven-
tion could be codified in the following way:

3Tb4<1dD (Fig. 3)

Some joints may be used interchangeably
across several systems. In such cases, the 
code is complemented with new items
(separated by a hyphen).
Example: 6Tb4<1dB-Ss3<1dB

4. METHODOLOGY
This study has been conducted using the joints described in the aforementioned Spanish architects’ patents as a
starting point, adapting them for manufacture via FDM printing. Three-dimensional modelling was carried out using
Rhinoceros v57, supported by the Grasshopper8 plug-in for parametric design. Next, the 3D models’ meshes were
verified, prior to the printing criteria being set up via Z-Suite9, software owned by the manufacturer of the Zortrax 
M200 3D printer used for prototyping. This software enabled the generation of Z-code instructions files for the printer. 
The printing material was ABS plastic.
For the construction and testing of the described prototypes, the different joints were linked using two different
systems: cylindrical wooden rods with 3mm diameter; rods generated by FDM 3D printing, with 3mm diameter and 
3mm perforations.

5. RESULTS
In Figs. 4a and 4b, joints are represented graphically (to the same scale) as well as by their respective coding. Graphics 
1 and 2 feature data pertaining to material usage (weight and length) and print time in each case.

6. RESULTS DISCUSSION
In Graphics 1 and 2, the proportional relationship between material usage and print time is apparent. Henceforth, we will
consider there to be a greater efficiency in the design of the joints, the lower the value of both results.
With regard to the number of rods and making the remaining variables uniform, the design of the joint becomes 
clearly less efficient the greater the number of rods that converge into it.
Regarding the influence of the type of system (Tb or Ss) on the size of the joint, we have not found any evidence that 
this variable affects the design efficiency. Many of the joints are even compatible with both systems.
Considering the position of the joint in relation to the module, those joints in position 2 (centre), used in Ss systems, 
are the most efficient. This result is determined by the variable ‘number of rods’, as only two bars are converging into

7 Robert McNeel & Associates (2015). Rhinoceros Release 5 SR12 64-bit (5.12.50810.13095, 0/08/2015) [Software].
Obtained from https://www.rhino3d.com/download/rhino/5/latest
8 Robert McNeel & Associates (2014) Grasshopper version August-27,Build 0.9.0076 [Software].
Obtained from https://www.grasshopper3d.com/
9 Zortrax Sp (2018) Z-Suite™ release 2.7.1.0 [Software]. Obtained from https://support.zortrax.com/downloads/

Fig. 3 - Codification for a joint based on the considered parameters. Authors’ image.
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Fig. 4a - Classification of joints according to the number of rods that converge (I). Authors’ image.

Fig. 4b - Classification of joints according to the number of rods that converge (II). Authors’ image.
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Graphics 1 and 2 - Relationship between material usage and print time used in the manufacture of each knot. Authors’ image.

these knots. In the remaining positions, almost all joints end up being interchangeable (as seen from 3 to 6 rods), 
which renders it impossible to determine any significant effect this variable has on its own efficiency.
In relation to rod continuity, continuous rod designs are generally more efficient, although they require pre-machin-
ing on the rods, making a perforation in order to correctly enable the joining process. These designs are printed in 
several pieces and require a supplementary task of additional assembly.
Regarding the position of the bars relating to the geometrical centre of the joint, no conclusive data has been acquired 
determining greater efficiency of one compared to another.
When it comes to shape, the less efficient family is A, with B the most efficient, although a high ratio of defective 
prototypes was encountered. On the other hand, in absolute terms, family F ends up being the most efficient design, 
as the joint has been reduced to the minimum that is viable, providing only the necessary axes for the articulation of 
the rods.

7. CONCLUSIONS.
The joint design is a fundamental parameter in determining the efficiency (in terms of time and material) of its
manufacture. Once the joint design has been optimised, the number of bars converging at the joint is the next key 
variable for determining its efficiency. Indeed, more rods converging at a joint result in greater material being used.
It does not merely influence the increase in material usage corresponding to the number of rod-joint unions.
In addition, the joint must grow to enable free movement, avoiding collisions with any adjoining bars, therefore
increasing the singularity of the rod axis relative to the centre of the joint as the number of bars increases.
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POLYHEDRA: DIDACTIC EXPERIENCES
Javier Barrallo, Francisco González-Quintial, Antonio Sánchez-Parandiet1

We do not know the exact origin of polyhedra, but we know that there were examples of several regular polyhedra, if 
not of all, in the Neolithic era. This makes us think that the prehistoric society had a mathematical ability far superior 
to that recognized by archeologists, more in keeping with the artistic skills they developed in mural paintings such as 
those inside the amazing Altamira Cave. We must also imagine that the Neolithic expertise to carve stone polyhedra 
that have reached our days, could have been surpassed by wood carvings, probably of higher quality and lost by the 
passage of time. 
The ancient Greek, Etruscan and Roman cultures greatly improved the manufacture of these models, and the
mathematicians Pythagoras, Euclid and Archimedes described them accurately in their works. The philosopher Plato 
also granted them with an esoteric nature, by relating them to Fire, Earth, Air, Water and Ether. It will be several
centuries more before scientists such as Della Francesca, Pacioli and Kepler return to show interest in polyhedra and 
that artists such as Da Vinci, Uccello and Dürer represent them masterfully. 
Again, after a break of a few centuries, the emergence of artists such as Gaudi, Escher or Dalí will introduce polyhedra 
in the art of the 20th century. In the 21st century, George Hart and Rinus Roelofs, among others, will turn them into 
sophisticated and precious objects straddling Art and Mathematics. 
This brief description through time shows us that polyhedra have evolved in parallel to human knowledge, and that 
their history is full of great names of Art and Science. This fact  allow polyhedra to be used for an interdisciplinary 
education where History, Art, Geometry and Mathematics are intertwined in a fascinating way. The purpose of this 
article is not to teach and learn polyhedra as an end in itself, but a mean to introduce more advanced Geometry and 
Mathematics through them. And, furthermore, to leave an open window to explore other areas in a multidisciplinary 
way, such as Astronomy or Philosophy.
Polyhedra have exerted an enormous fascination not only in scientists, but among the population in general.
Historically, they were the first three-dimensional objects to be classified, and even in our days, we are surprised
by their properties, aesthetics, variety and applications. Any polyhedron is an educational element with enormous
didactic possibilities and a great attraction for students who see them not as mere geometric objects, but as an entity 
that produces a great fascination. It is only necessary to observe a lesson of integration, equations, matrices, etc. and 
compare it with a class of polyhedra, to observe the enormous magic that they display to students, compared with the 
most academic subjects of Mathematics and Geometry.
Being that way, we ask ourselves why do polyhedra hardly have any theoretical importance in the academic curriculum
of our students? It might seem that they are not very important in science courses and that they lack utility and
applications beyond their beauty, but this is not the case. Polyhedra allow to introduce a large number of geometric 
concepts and develop many skills, both intellectual, to recognize and analyse them, and manual, for their physical 
construction.
The arrival of computers meant a drastic change in the way of designing and creating polyhedra. Most CAD
programs include polyhedra in their graphic libraries and facilitate their design with multiple tools that avoid making
cumbersome calculations of edges and angles. Computers also allow two objects to occupy the same physical space

1 E.T.S. Arquitectura Donostia-San Sebastián | Universidad del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU 
javier.barrallo@ehu.eus, francisco.gonzalez@ehu.eus, antonio.sanchez@ehu.eus
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(virtual in this case) so that intersections of elements can be made in a very intuitive way to generate new ones of 
greater complexity, which obviously cannot be executed in the real world.
To this computational facility to design new polyhedra, we must add the arrival of the new 3D printers, capable of 
producing complex models in a wide variety of materials and with a great level of detail. All these advances have 
caused a blooming of all types of polyhedra with magnificent finishes and have relegated traditional constructions of 
handmade polyhedra to a second plane.
In spite of having the modern and productive FabLab Donostia in our university, we consider that the technological
advances in the design and production of polyhedra models should, in no case, be carried out at the expense of
eliminating the hand work with polyhedra from our teaching programs. Starting from simple materials such as
cardboard, scissors and glue, students get a much more enriching experience when building a polyhedron from 
scratch, than with a 3D printer. While both techniques provide educational values, they should not be exclusive.
In addition, numerous interdisciplinary didactic projects can be carried out for students of Mathematics, Fine Arts,
Engineering, Architecture ... and, in general, for any type of scientific discipline. 
In this lecture, we present several didactic experiences carried out in the E.T.S. of Architecture in Donostia-San
Sebastián at the University of the Basque Country (UPV/EHU). In these projects, we will travel through the polyhedral
world, stopping in various areas of knowledge such as Fractals, Tensegrity, Fourth Dimension, Symmetry,

Fig. 1 - FabLab Donostia computer made polyhedra versus handcrafted polyhedra at the E.T.S. of Architecture in Donostia-San Sebastián.

Fig. 2 - The Platonic Solids made with laminar reciprocal structures (Cube, Tetrahedron, Octahedron, Dodecahedron and Icosahedron).
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Topology, Geodesics... In our projects, we will use preferably simple and low-cost materials, but also easily accessible 
commercial products, such as the ones commercialized by the North American company Zometool and the South 
Korean company 4DFrame, both with a significant presence on the Internet. 
All these projects have been carried out satisfactorily with university students and, in many cases, before a public
of all ages in Science Festivals and similarly popular events. The feedback of the students has always been very
satisfactory, both for the work done and for the possibility of taking home one or more handcrafted polyhedra built 
by them.

Fig. 3 - Collaborative works constructing a Fullerene C240 with Zometool at the University of the Basque Country
and a Sierpinski Fractal Tetrahedron being assembled by young students at Breck Institute (Minnesota).

Before beginning to briefly describe these projects, which will be presented in greater detail during the conference, 
it is necessary to remember that it would be convenient for students to have an initial theoretical basis. In this way,
although all our projects are eminently practical and designed to be developed manually, it would be necessary to
begin by describing several basic concepts such as vertex, edge and face. Students should be able to count these
elements in several polyhedra, and try to experimentally obtain Euler’s Theorem for polyhedra (Faces + Vertices = 
Edges + 2). 
This first project, eminently theoretical, can be complemented with the construction of the five Platonic Solids
using a construction system as those described previously (Zometool, 4DFrame). It will also be interesting to explain
the concept of duality and concavity/convexity. This practice would be complemented with some concepts about
symmetry, both in the plane and in space, and differentiating regular from semiregular and irregular polyhedra.
Our second didactic project is the Stellation and the Truncation of polyhedra. The dodecahedron may be stellated
easily, producing beautiful figures such as the one represented by Paolo Uccello at the Basilica of San Marcos in Venice.
The icosahedron is a perfect polyhedron for truncation, resulting in the well-known geometry of the soccer ball.
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The third project has to do with folding and unfolding a polyhedron. As a theoretical starting point, we can start from 
the dominos, triminos, tetraminos (the pieces of the Tetris Game!), pentaminos and hexaminos. It is a good problem 
to find which of the hexaminos may be folded to compose a cube and which cannot. Students should then be able to 
create consistent unfolds of triangles for an octahedron, and pentagons for a dodecahedron.
The fourth project consists of generating virtual polyhedra from a flat figure, using several mirrors that act as a
kaleidoscope. In a very simple way, we can generate a multitude of polyhedral images, both finite and infinite. As a 
parallel activity, it is also possible to create polyhedra with their outer faces made with any mirrored material and 
produce interesting reflections and lighting effects.
Our fifth project is the one for Polytopes, that is, the generalization to any dimension of a three-dimensional
polyhedron. We will study how to generate a hypercube (fourth dimension) with soap bubbles inside a cube and the
different ways of representing hypercubes in the fourth and fifth dimensions (and their projections in lower
dimensions) through Zometool as constructing system.
The sixth project will introduce us to Topology, learning concepts such as the Hamiltonian Path and studying what 
type of polyhedra allow a sequential travel along its edges without repetitions. We will learn if it is possible to generate 
the edges of an icosahedron with a continuous thread starting from three golden rectangles. 
Our seventh project will take a tour through reciprocal surfaces, starting with bars and experiencing specially with 
sheets, to generate an interesting collection of regular and semi-regular polyhedra in different sizes and materials.
The eighth project will present tensegrity. We will create different models with wooden bars and elastic bands, based 
on the experiments developed by Buckminster Fuller, from the icosahedron using six bars to more complex polyhedra.
The ninth project will introduce us to fractals. Triangles (Sierpinski) and squares (Menger) can be broken down into 
tiny copies of themselves. Extending this construction to the three-dimensional space, we can create incredible fractal 
structures, highlighting those of the tetrahedron and octahedron using 4DFrame, whose large size from the fourth 
generation onwards makes it suitable for collaborative projects between several people. 
In the tenth place, we will show how to build a Geodesic Dome and construct Fullerenes, studying their relationship 
with polyhedra. We can also build nanotube structures and, as it happened in the previous project, it is recommended 
to work in groups, given its complexity and the high number of pieces, as shown in Fig. 3. 

The teaching project number eleven includes 
art and history as a curious challenge, in which 
students have to choose (or raffle) a polyhedron
and a historical or artistic period. With the
results, they must design their polyhedron
decorated according to the period or associated
artistic flow, as shown in Fig. 4.

Fig. 4 - Regular Polyhedra associated with artistic periods: 
Nazari (Alhambra) Tetrahedron, Vitruvian Man Cube,
Manuelino Style Dodecahedron, Gothic Icosahedron,

Pointillism Dodecahedron, Arts & Crafts Cube,
Bauhaus (Mondrian) Cube, Abstract Expressionism

Octahedron, International Style Icosahedron.
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For project twelve, we show how to make a bamboo construction using, as a frame for the assembly, a perforated 
polyhedron. There are multiple variants of this project, one of our students’ favourites.
Project thirteen is based on origami, which allows us to create nested or intersected polyhedra by assembling their 
faces using cardboard or plastic trimmed flat pieces. There are numerous constructions of this type, being origami 
probably the most well-known source for the design and handcraft of polyhedra.
Project fourteen consists on building a lamp placing a light source inside a polyhedron. We remark that it is not 
enough to illuminate it; students should consider the material, the temperature, the perforations, the transparency, 
the shadows it produces, etc.
And our last project, fifteenth, has been intimately linked to art. The proposal consists on eliminating the maximum 
of elements of a polyhedron in an artistic way, but making it remain recognizable, as Sol LeWitt made, by leaving only 
some edges of a cube. Another example could be the work of the Basque sculptor Jorge Oteiza, who removed matter 
from the faces of a cube until making it extremely light, almost immaterial, but recognizable as a cube.
As a conclusion, it can be seen how the overall of these fifteen didactic experiences are not limited to Geometry or 
Mathematics, but that they cross over many areas of Art and Science in an interdisciplinary way, promoting learning 
and creativity. On the other hand, the response of the students is always enthusiastic, well beyond the usual scientific 
disciplines.

Fig. 5 - Polyhedral Lamps (Organic Cube and Stellated Dodecahedron).
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GAUDI INVERTED: A LAYERED DESIGN PROTOCOL
FOR INTEGRATING MATHEMATICAL INVERSION AND RULED SURFACES
Emmanouil Vermisso1

KEYWORDS: Design Computation, Ruled Surfaces, Inversion, Topology, Gaudí.

INTRODUCTION
This abstract discusses a generative design process for architecture, using mathematical rules and intersecting
topology protocols, inspired by the use of geometry in the later stage (1915-1926) of the Sagrada Familia’s design 
by Antoni Gaudí. The rules for generating the cathedral windows are examined to propose new variations. An addi-
tional step is proposed, considering the inherent use of mathematical thought in the work of sculptor John Pickering.
Both Gaudí’s and Pickering’s work regard mathematics as a generative platform for design, defining layered steps for 
the realization of a-priori unknown 2/3-dimensional outcomes. These studies originate in the work of Gaudi and
subsequently, Mark Burry’s contribution to formulating design models towards the completion of the Sagrada Familia 
through parametric protocols, focusing on the use of ruled surfaces for architecture [01] (Fig. 1).
In our assessment of this particular building, we would like to propose the consideration of John Pickering’s use 
of mathematical inversion to transform known geometrical surfaces, generating new topological conditions by
numerical deformation (Fig. 2). This mathematical rationale can be integrated with Gaudí’s approach, introducing a 
second stage of deformation in ruled surfaces, particularly looking at the Hyperboloid of Revolution, a geometry that 
is ubiquitous in the Sagrada Familia design.

RESEARCH
Gaudí had always regarded nature as a model for design, because he appreciated the ability in natural systems to
successfully resolve the continuity between elements, avoiding the crude tectonics realized by human construction (i.e. 
the connection between the tree trunk and branching elements). Most of his work is abundant with fluid geometries

1 Associate Professor, Florida Atlantic University, USA (evermiss@fau.edu).

Fig. 1 - Hyperboloid of Revolution thread model, used for teaching descriptive geometry (19th c., Musée des Arts et Métiers, Paris);
Surviving 1:10 plaster model (reconstructed) for transept clerestory window of the Sagrada Familia;

Sectional Model from the “Gaudi Unseen” traveling exhibit with overlaid ruled surface to show opening in transept vault;
Interior of the lateral nave windows, showing light quality on the walls [01]. (image credits by author).
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and curvilinear shapes (i.e. Casa Milà, etc). During the later years of his life, nevertheless, he shifted towards a more 
austere visual expression for the design of the “inherited” commission for the Sagrada Familia cathedral, by adopting 
rigorously geometrical design rules. At first glance, this seems to move away from nature, yielding topologies which 
are more clearly defined. In fact, Gaudí embraced the natural example further, by understanding the mathematical
rules inherent in natural systems. His process exploited in particular ruled surfaces like the Hyperbolic Paraboloid
and the Hyperboloid of Revolution of one sheet (Fig. 1). Both of these geometries are defined by straight lines
(“rulings”), giving an advantage in making the formwork for full-scale construction. Gaudí followed a profoundly
“layered” process for the design of the wall, ceiling and roof openings in the Sagrada Familia. These are derived 
through a combination of Boolean operations. Specifically, the transept vaults and clerestory windows in the Sagrada 
Familia involved the subtraction of ruled surface volumes from a notional material solid [01], resulting in openings 
which are defined by doubly-curved hyperboloid surfaces (Figs. 1 and 2).

THE USE OF RULED SURFACES: THE HYPERBOLOID OF REVOLUTION
Ruled surfaces have played an important role in architecture of the early to mid-twentieth century, but it was Gaudí 
who introduced their use so extensively. The Hyperboloid of Revolution

“…can also be generated by rotating a straight line about a skew axis…The surfaces obtained by rotating
conics are special types of a broader class of surfaces, which are called, for analytical reasons, “surfaces 
of second order”; these are the surfaces satisfying equations of the second degree in three-dimensional
Cartesian coordinates” [02]

In Fig. 2, we demonstrate the process by which several of the Sagrada Familia openings were generated, using
Boolean operations of Hyperboloids of Revolution and elliptical hyperboloids (elsewhere in the building, Gaudí also 
employed hyperbolic paraboloids). We are interested in examining the resulting geometries, in reference to the rules
for combining the ruled surfaces and their resultant light behaviour.
The use of the particular geometry is interesting, because this ruled surface preserves its overall topology after scaling. 
According to mathematicians David Hilbert and Stephan Cohn-Vossen,

“The two families of straight lines that lie on the hyperboloid of one sheet and the hyperbolic paraboloid have 
a surprising property. Let us imagine all these straight lines to be made from a rigid material and fastened 
together at all the intersections in a way that permits of rotation but not of sliding. It would seem reasonable 
to think that straight lines fastened in this way must form a rigid framework. But as a matter of fact, the 
framework is movable…" [02]

Therefore, a physical model with fixed intersection of the rulings would be able to extend and shorten, changing 
the shape of the hyperbola it defines, while keeping the length of the rulings. We will keep this in mind during
the parameter definition of the project; starting with one hyperboloid, several window variations may be created,

Fig. 2 - Opening generation using Boolean subtractions among 4 intersecting hyperboloids of revolution and 2 elliptical hyperboloids,
after Gaudi’s method; surface shadows at 3 times throughout the day (The topology is defined by rulings).
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modifying its length before the Boolean subtraction. The orientation of the subtracted hyperboloid in relation to the 
horizontal plane (XY), and the positioning of the rulings in relation to the axis of revolution is important, because it 
affects the way the light bounces off the wall or ceiling.

MATHEMATICAL INVERSION: JOHN PICKERING
Interestingly, artist John Pickering - in resemblance to Gaudí - experienced a shift in his work during the 1970s [03], 
when he “became anti-nature…”, moving to strict numerical rules for his sculpture work2. His subsequent sculptures 
used a mathematical formula called “Inversion” (R2 = OA x OI), to introduce extensive controlled deformations in
combinations of intersecting solids (Fig. 3).
The inversion process introduces curvature in all referenced geometries. Euclidean shapes are represented as two or 
three-dimensional curves (Fig. 3). Within the context of inversive geometry, a straight line corresponds to a curve. 
This type of transformation becomes more clear in relation to non-Euclidean geometries like hyperbolic geometry, 
where the equivalent of straight lines are represented as arcs of a circle within the Poincaré disc model3.
Pickering’s work entailed manual calculations of point coordinates in space to generate guidelines for the sculptures. 
In order to utilize this rule, an inversion script was developed in a parametric modelling environment and applied to 
transform a Hyperboloid of Revolution (Fig. 4). Examining various angles allows the investigation of both topological 
curvature variation, as well as shadow patterns on the resulting topologies. The script extracts the edges from a three-
dimensional surface topology, divides these into sets of points (higher values increase output accuracy), and finds 
their inverse points in space, by calculating the distance of the original points from the centre of the “inversion sphere” 
with the inversion formula: R2 = OA x OI (see Fig. 4). In the inversion of ruled surface topologies, moving the centre 
of the inversion sphere closer to the Hyperboloid of Revolution, causes greater deformation of the rulings.
The inversion algorithm was applied through a parametric 3D model to generate the inverted option of the window 
shown in Fig. 2. The original topology and its inverted result are shown in plan in reference to the sphere of inversion 
(Fig. 5). The results echo the original topology but are asymmetrically distorted, due to the location of the inversion 
circle. The new curvature creates interesting shadows thanks to the deformation. One thing to consider however, is the 
fact that the rulings are no longer straight lines after the process of inversion.

2 As in Gaudí’s case, he actually got closer to nature; as Mohsen Mostafavi has observed, “Pickering’s fascination with geometry, inversion and 
fractals seems part of a ploy to get closer to nature”. [03]
3 For further clarifications on matters of Hyperbolic and Inversive geometry, the author redirects the reader to available online resources like 
Wolfram’s MathWorld.

Fig. 3 - Sculpture, showing deformation of a 3-dimensional square grid, using the Inversion formula: R2= OA x OI, where O is
the centre of inversion, and I the Inverse point of A. The centre of inversion lies inside the grid (John Pickering, 1981-1983-1984);

Diagrams: the inversion of a straight line results in a curve, while inversion of a rectangle yields a curved shape;
Various grid shapes are shown in the original and inverted conditions.



044

GEOMETRIAS’19: POLYHEDRA AND BEYOND
FCUP | PORTO | 05 . 06 . 07 SEPTEMBER 2019
GEOMETRIAS’19: BOOK OF ABSTRACTS
ISBN: 978-989-98926-8-2 | https://doi.org/10.24840/978-989-98926-8-2

Fig. 4- Inversion algorithm in parametric modelling software (Grasshopper®). Four stages of deformation are shown.

As straight lines are advantageous for fabrication purposes, the inverted surfaces could be reconstructed by a new 
set of curves which are geodesics (shortest path between two points on a series of subdivided inverted surfaces,
Fig. 5). 

CONCLUSIONS
We discussed the mathematical logic present in Gaudí’s work vis-à-vis an equally rigorous analogue numerical
methodology in Pickering’s work. Echoes of underlying codification seem to exist in both: the significance of the
invisible aspect which drives the final design.
In the Sagrada Familia, ruled surfaces manifest in the building through their absence, what Mark Burry has called 
an architecture of “real absence and virtual presence” [04]. To appreciate the building complexity, one has to imagine
the original topologies from which the built components emerge. In Pickering’s work, the translation of certain
“regular” topologies into non-Euclidean geometries using “mathematical inversion” is noteworthy, because it
operates into the hyperbolic plane. His sculptural volumes warrant a similar consideration, asking the viewer to
decipher the complex intersecting topologies by reference to their earlier, straightforward Euclidean counterparts.
As a result, this notion of ambiguity in visual expression is present in the work of both designers, as one needs to
decode their geometrical intent by tracing back the design transformation steps. If one were to speculate on a
possible evolution of Gaudí’s methodology by further implementing mathematical rules, it seems appropriate to
integrate other layers of geometrical complexity like Inversion. This additional layer will promote even richer results, 
and consider, among other factors, wall surface illumination from a different point of view.
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Fig. 5 - Comparison of the original and inverted topologies (front-back, inverted shape outlines are indicated in red); 
diagrams showing possible definition of conventional isocurve (1) surfaces through geodesics (2) in order to get developable

curves which can be fabricated from straight lengths of material; Surface shadows on the inverted window topology at various
times throughout the day (2 hour intervals from 6am to 6pm).
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STRAW MODELS REPRESENTING
THE SKELETAL STRUCTURES OF RADIOLARIAN PANTANELLIUM
Takashi Yoshino1 and Atsushi Matsuoka2

KEYWORDS: Radiolarian Skeleton, Pantanellium, Schlegel Diagram, Straws and Pipe Cleaners.

INTRODUCTION
Skeletal structures of radiolarians, a kind of marine plankton, have been studied by many palaeontologists because
radiolarians are frequently used as indicators of age and environment in the Earth’s history. Their structures have
varied widely since the occurrence of radiolarians five hundred million years ago. Their variation is well-known 
through the publications of Haeckel’s works [01]. The description of the shape of radiolarians has become more
accurate with the progress of scanning electron microscopes (SEM) and micro X-ray computed tomography (CT) 
systems since Haeckel’s era.
We focus on the genus Pantanellium, the representative radio-
larian in the Mesozoic Era, in this study. The main features of 
Pantanellium are their thick pore frames in the cortical shell 
and two opposite spines (primary spines) (Fig. 1). The cortical
shell consists of approximately thirty polygons: pentagons 
and hexagons. Matsuoka et al. [02] and Yoshino et al. [03] 
used Schlegel diagrams in order to represent the structures 
of the cortical shell. However, there is no suitable method to
construct the skeletal structure models from the diagrams. In 
this study, we consider the model constructions using straws 
and pipe cleaners.

RESEARCH
The representative SEM image and terminology of Pantanelium are shown in Fig. 1. The length is approximately 200 
μm from tip to tip. The cortical shell consists of almost regular pentagons and hexagons. Primary spines are extended 
from the two vertices of the polyhedral frame in opposite directions. The cortical shell can be approximated to a frame 
of a polyhedron so that its structure can be geometrically represented by Schlegel diagram. Therefore, the structure 
may be reproduced according to the diagram.
The Schlegel diagrams of the skeletal structures of Pantanellium were obtained from the 3D data of real fossil speci-
mens of the earliest Cretaceous age. We made eleven diagrams based on the different specimens presently. Since all 
of the diagrams were structuraly different, we concluded that the skeletal structure of Pantanellium was geometrically 
different within a single species. Fig. 2 shows the diagrams drawn by the authors, as examples. They have 27 or 28 pore 
frames (polygonal faces). Two open circles in each diagram represent the location of the primary spines. The central 
polygon corresponds to the front so that the outer frame corresponds to the frame on the back. Because the skeletal 
structures were not regular, the polyhedrons represented by the diagrams have no names. For this reason, each dia-
gram has a number, and the number is merely the order in which the 3D image was taken.

1 Toyo University, Japan (tyoshino@toyo.jp)
2 Niigata University, Japan (amatsuoka@geo.sc.niigata-u.ac.jp)

Fig. 1 - Representative SEM image
of a fossil Pantanellium specimen.
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Fig. 2 - Examples of Schlegel diagrams representing the skeletal structures of Pantanellium specimens.

We used straws and pipe cleaners as materials of the skeletal model. The straws are used for the edges of the
polyhedron, and the pipe cleaners are used for connecting the neighbouring straws (edges). We referred to the
method developed by the Mathematics Certification Institute of Japan [04], summarized as follows:

Firstly, given numbers of straws and pipe cleaners are prepared. The lengths of the straws and pipe cleaners are
approximately 20 mm and 30 mm, respectively. The lengths do not have to be exact.

Secondly, all of the pipe cleaners are folded at the centres. Fig. 3 shows the materials.
Finally, all of the straws are connected according to the Schlegel diagram. One end of the pipe cleaner is inserted 

into a straw, and the other end of the cleaner is inserted into another straw. Only the fold of the pipe cleaner 
is exposed. 

Two pipe cleaners are inserted to one end of a straw in order to form a vertex. Therefore, n number of straws and 
pipe cleaners are necessary for a vertex of a degree of n. Fig. 4 shows a close shot of a vertex of a degree of three,
for example.
The original dimensions of straws (Shibase Industry Co., Ltd.) and pipe cleaners (Zonroic) are approximately 180 mm 
in length and 4.5 mm in diameter, and approximately 300 mm in length and 6 mm in diameter, respectively. The 
diameter of the straws must be large enough for the insertion of two pipe cleaners, however, it must be small enough 
in order to construct a model. We failed to construct a model using another type of straw with a larger diameter
(6.0 mm) and the same pipe cleaners.

Fig. 3 - Materials used for model construction.
Left: pipe cleaners. Right: straws.

Fig. 4 - Close shot of a vertex
of a degree of three.

No. 1 No. 2 No. 4
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The number of straws denoted by ns is equal to the number of edges, and the number of pipe cleaners denoted by
np is the summation of degrees of vertices for all the vertices. If all the vertices are degrees of three, the two numbers, 
ns and np , can be described using the number of pore frames (faces), nf  , as:

ns = 3 (nf − 2), np = 6 (nf − 2).
These formulae are useful for the preparation of the materials. It is notable that all the vertices are degrees of three for 
most of the cortical shells of the Pantanellium. Only one vertex is a degree of four among our 3D data of the eleven 
specimens.
We succeeded in constructing the cortical shell models of Pantanellium. The image of the resulting models of No. 2 
and No. 4 in Fig. 2 are shown in Fig. 5. Both of the specimens have 28 pore frames (faces) so that the number of straws 
and pipe cleaners were ns = 78 and np = 156, respectively. The time for construction, including the time for cutting 
the materials was approximately two hours in both cases. It was easy to connect the edges (straws), however, it was
difficult to make the polygons according to the Schlegel diagram. The structures of the models were almost the same as 
the 3D models produced using the 3D printer. Therefore, we concluded that the straw model was an effective method 
to reproduce the shapes of the cortical shells of Pantanellium. As shown in Fig. 5, we added the primary spines to the 
model using the same type of straws as those for the edges although the length was different.

Fig. 5 - Resulting models of No.2 and No.4.

There are two advantages of the straw model over the unit origami model which we proposed formerly. The first
feature is the time for preparation of the materials. The straw model takes approximately half an hour, on the other 
hand, the unit origami model takes more than one hour. The unit origami model needs more time for two reasons: 
the first reason is that the folding of one unit takes a few minutes; the second one is that the number of edges must be 
prepared in advance. The second feature is the representation of the primary spines. We must attach different shapes 
of origami to the unit origami model as the spines, however, we merely attach long straws to the straw model. The 
advantage of the unit origami model, on the other hand, is that the model uses only paper and glue.
Most of the commercial tools to construct polyhedrons assume that the polyhedrons are regular in shape. On the 
other hand, handmade parts, corresponding to edges in most cases, are suitable for non-regular polyhedrons. For this 
reason, we used straws and pipe cleaners or origami for the skeletal structure models. These materials are useful for 
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such kinds of polyhedrons. However, we have to prepare the units ourselves. Therefore, the preparation must not be
time-consuming; the number of units increases almost linearly with the number of faces (pore frames). The pore 
number of Pantanellium is the smallest among pore framebearing radiolarians, therefore, it is necessary to consider 
another approach to make a model which has a larger number of pore frames.
We will prepare some starter kits to take away for the participants who are interested in the model at the poster
session. We will demonstrate how to construct the model using the same materials.

CONCLUSIONS
We constructed the cortical shell models of the radiolarian genus Pantanellium. The structures of the cortical shells 
were considered as polyhedrons, however, they were not always regular in size. For this reason, we did not use
commercial tools but straws and pipe cleaners as materials. Straws represented the edges of the frame structures, 
and pipe cleaners were the connections. The models were made according to the Schlegel diagrams drawn, based 
on the 3D images of real specimens. We demonstrated the procedure of the construction and the resulting models. 
This method had advantages over the unit origami method: a simpler preparation of materials and representation of 
primary spines.
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POLYHEDRAL CHARACTERS AS A BASIS
FOR TEACHING COMPUTER ANIMATION
Ratko Obradović1, Miloš Vujanović2, Igor Kekeljević3,
Ivana Vasiljević4, Isidora Đurić5, Lidija Krstanović6 and Bojan Banjac7

KEYWORDS: Polyhedral Characters, 3D Animation, Platonic Bodies.

INTRODUCTION
Today's computer animation provides a wealth of possibilities for creating different types of animated films, designed 
for the entertainment industry, for the needs of various engineering disciplines or medicine, as well as for various 
aspects of education. 
The main idea of this abstract is to present the process of creating simplified humanoid characters, obtained by the 
combination of Platonic bodies which holds great potentials for the education of students with a minimum knowledge 
in the field of computer 3D animation. We present a new and funny way of animating characters without requiring the 
standard skeleton and rigging in the creation a humanoid character.

RESEARCH
This research explores methods in education for teaching character 3D modelling and computer animation, focusing 
on the education of students with no prior knowledge of character 3D modelling. One of the possible approaches was 
presented in [01], proposing four related tasks for studying manlike 3D character animation. However, this method 
required that students possess a considerable knowledge of 3D modeling, texturing, animation of lights and cameras, 
as well as rigging. This abstract proposes a method for teaching students the basics of character 3D modelling and 
animation, which relies on the basic geometry of the Platonic bodies.
Polyhedra can easily be projected into a 2D plane, and can thus easily be painted, providing a sufficiently interesting 
basis for creating angular characters, like those (Figs. 1 and 2) presented in the Alea Iacta Est animated movie [02]. In 
[02], the cube is used as the main motive to represent everything that exists in nature. The main idea was to show that 
technology can simplify reality by bringing it down to basic geometric shapes. All objects such as plants, animals and 
the planet Earth, as well as humans, are cube-shaped, which facilitates their common coexistence.
This approach can be used to animate an interesting story whose quality depends on the imagination of the screen-
writer, the director, and the art team. Namely, a good movie does not always require top technical conditions or good 
knowledge of hardware and software used for 3D animation, but, in fact, sometimes, a good or even an outstanding 
artistic film can be achieved with imagination and idea, or quality scenario. As early as 1978, Marr and Nishihara [03] 
offered a model in which all objects were presented with a cylinder.
In the animated film The Dot and the Line [04], a simple line (man) attempts to woo his true love, a dot (women), 
away from the unkempt squiggle she prefers. But he will have to learn to bend before she will notice him. Another 
representative examples are the humanoid polyhedral characters [05], illustrated in Fig. 3.
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Fig. 1 - Cube's characters, humans and car. From Alea Iacta Est,
by B. Knežević, R. Obradović, M. Vujanović, I. Nikolić and N. Kuzmanović, 2011, http://www.new-silhouette-studio.com/#aie [02].

Fig. 2 - Cube's character with cubes hear and Apple as a Green Alien. From Alea Iacta Est,
by B. Knežević, R. Obradović, M. Vujanović, I. Nikolić and N. Kuzmanović, 2011, http://www.new-silhouette-studio.com/#aie [02].

Fig. 3 - Polyhedral Characters by Sivan Baron, 2014.
From http://www.sivan3d.com/ [05].
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Four convex regular polyhedra were selected: tetrahedron, hexahedron, octahedron, and icosahedron [06], to present 
the idea of creating simplified humanoid characters. The concept of polyhedra was popularized by Plato. "Platonic 
bodies" might be a more popular expression instead of "regular solids", more commonly used in geometry. Plato
describes them first in the Timaeus, by associating the pyramid (tetrahedron) with fire, the icosahedron with water, 
the cube with earth, the octahedron with air, and the fifth element with the 5-dimensonal space or universe. About 
the fifth element, Plato obscurely remarks: "...but since there is a 5th combination (of triangles) the God used it for
arranging the constellations on the whole heaven." [07]. Plato connects them with an ancient model for understanding 
the world that is described by the four elements: fire, water, earth, and air, and the universe as the fifth element. Such a 
model with the mentioned four immutable elements, whose combination creates everything in nature, dominates the 
ancient philosophy and is mentioned at the earliest by Empedocles. He explains the connection in a picturesque way, 
through the experience that we would have when keeping these shapes in our hands. The tetrahedron represents fire, 
because its sharp edges are like flames of fire, the icosahedron rolls and it is elusive like water, the hexahedron stands 
firm and stable as the earth beneath our feet, while the octahedron is unstable like air [08].
Ancient Greeks believed that there was an increased presence of a particular element in body fluids in humans, 
which affected their behavior. They introduced an explanation for the four temperaments that were associated with
a particular element and certain behavior. Thus, the choleric is a fire temperament, found with people who have
individualistic traits that are aggressive, temperamental and ambitious. Phlegmatic temperament is related to water, 
with people who are sensitive, calm and withdrawn. Melancholy is a climactic temperament, and such individuals 
are rational, analytical and prone to perfectionism. Sanguine is an air temperament, with people who are intellectual, 
communicative and social.
Western astrology also relied on the idea of four elements, but also on the theory of four temperaments, in the
ambition to understand human behavior and their fates. In astrology, there is a connection between people and
certain celestial bodies, which influence a particular zodiac sign. Saturn affects the fire signs: Aries, Leo, and
Sagittarius, who are passionate, energetic and ambitious in temperament. The Moon affects the watermarks: Cancer, 
Scorpio and Pisces, which are introvert, emotional and sensual. Mars affects the earthly signs: Taurus, Virgo and
Capricorn who are stubborn, practical, materialistic in temperament. In the end, Jupiter influences air signs: Gemini, 
Libra, and Aquarius, which are abstract, intellectual and analytical.
The above theories were the starting point in the design of our
characters, in the desire to establish a connection between geometric
shapes, colors, and temperaments. Fig. 4 shows the concept of our 
four characters. Water is made up of icosahedrons and is painted
violet, which is usually associated with emotions and feelings. Wassily
Kandinsky says that violet is also the color of weakness and sorrow,
because it is the chilled version of the red color. Fire is made of tetra-
hedrons and is painted red. Red is the color of life, passion, war, Eros.
Earth is made up of hexahedrons and is painted in brown color, which 
is the color of reality, earthly, material. Air is made up of octahedrons 
and is painted blue, which is the color of the sky, immaterial [08].
In a semiotic domain of four elements, water is associated with a circle,
a female principle, which denotes continuous movement, cycle, 
egg symbol, renewal of life. Fire is associated with a triangle, a male
principle, an erection, a penetration, an elevation. The earth connects 
with the square, the female principle, because the earth represents
fertility, birth, and motherhood. The air is associated with the rhombus, 
which is the male principle, the space between heavenly and earthly,
air [8].

Fig. 4 - Concept of four Characters created from
the Platonic bodies: Water, Fire, Earth and Air.
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Fig. 5 shows the character made of four hexahedrons, in which the
details are shown through the texture. The whole process of the character 
creation consists of three main steps: 1) creating the 3D model based 
on the regular polyhedral geometry; 2 ) unwrapping 2D texture of the 
developed character 3D model; and 3) creating vector texture which is 
further projected back to the 3D model surface. The unwrapped texture 
(Fig. 5, down) illustrates the simplicity of the angular character creation 
only by using UV mapping technique. The texture is composed of vector 
segments that are separated in more layers and rigged in order to be able 
to be animated. Animation of the texture enables greater possibilities 
of poses and expressions, and even to make movements that are more 
attractive and more expressive than it would be possible with realistic
characters, because it would be unnatural for realistic characters to
develop in a plane or to become different geometric figures. According to 
that, the texture is visually simplified and reduced to geometric shapes in 
order to stylistically connect with the geometric design of the characters.

CONCLUSION
The analysis of this study shows that

"the effects of the observation of the object suggests that the 
representation is also defined by knowledge concerning the 
form, regardless of the angle of observation, distance, lighting 
and other current observing conditions." [09].

When observed, visual objects are represented in structural descriptions, 
such as that a man consists of one head, one body, two arms and two 
legs, and a bird of one head, one body, two legs and two wings. These
structural descriptions may also be unrealistic. Contemporary practice 
in animation shows that such representation of objects can be carried
out using polyhedra. In observation, visual objects are represented by a
structural description and then a comparison is made of the currently observed image with characters stored in 
memory. So, in the first step, visual stimulation needs to be divided into constituent, primary, elements (polyhedra), 
and in the second, compare the structural descriptions and what we see with what we know about the character.
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Fig. 5 - Character Earth and its unwrapped texture.
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ARCHITECTURAL APPLICATIONS OF GEOMETRIC STRUCTURES.
CASE STUDIES OF SURVEY IN SOUTHERN ALBANIA.
Luigi Corniello1, Enrico Mirra2 and Lorenzo Giordano3

KEYWORDS: Architecture, Geometry, Survey, Fortresses, Albania.

INTRODUCTION 
This research itinerary focuses on the study of defensive structures in southern Albania, with research operations 
of a cognitive nature which expose the geometric and structural beauty of the fortified architecture. Through the
activity of reading, we could find identity issues of the design discipline and the relationships between representation 
and measure; the graphic aspects and the structural values of the fortifications, understood as traces of the past to be 
compared with the contingencies of the present. The representation activity of the castles of Porto Palermo, Saranda 
and Butrint was set up, providing, at an early stage, the execution of a survey that extended to the architectural bodies 
and surrounding territories, in order to define a primitive geometrical model. Subsequently, and in a second survey 
and restitution campaign, measurements of architectural details, structures and geo-referencing of the digital model
were carried out. Appropriate photographic documentation was also produced in addition to bibliographic,
archivistic, iconographic surveys.

RESEARCH 
In order to outline a reading of the castles of southern Albania, we considered useful to deepen the issues related
to treatises intended for defence and its mechanical and engineering implications. In this historical setting, the
viewpoints characterizing the design of the fortifications, depicting fortified castles equipped with static defence
systems (such as ditches, triangular bastions, watch towers and battlements), and dynamic devices (such as
drawbridges, mobile walkways, wooden platforms), that represent a clear evolution of the two-dimensional
planimetric scheme designed by Filarete and Giuliano da Sangallo. Francesco di Giorgio Martini contributed to this 
critical debate on defence architectures with the drafting of his main work, namely Civil and Military Architecture, 
developed between 1489 and 1492, the main parts of which are kept in the Codex Magliabechianus. The theme of
fortifications is tackled by Francesco di Giorgio Martini in the fifth of the seven books, in which the second edition 
of his treatise is articulated. The attention given by Francesco di Giorgio Martini to the identification of a continuity 
between antiquity and his own time, in terms of the revival of an aesthetic and constructive dignity to be applied to 
architectures of a warlike type (such as fortresses for defence) is put into crisis by the clearly functionalist attitude 
expressed by Leonardo da Vinci through a reflection, written in 1490, involving man and fortified architecture: “It 
cannot be beauty and utility, as it appears in fortresses and little men”. As we know, Francesco di Giorgio Martini, 
who lived in the second half of the fifteenth century, was an illustrious expert of art and military architecture and, 
at the same time, on the construction of fortresses, and wrote the Treaty on fortified architecture. The content of his 
work ranges not only on the fortifications, but deals also with all the fundamental aspects that synthesize the fortified
architecture: places, cities, bridges, works of plumbing, temples, theatres, columns, and still geometric rules, levers, 
war machines. The fortress is considered as the fulcrum of the city, considered the head and compared to the human
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intellect, introducing, for the first time, a vision not only of a defensive and strategic function, but also for its symbolic 
representation, therefore, with military and political values. Subsequently to this theory, fortress and war become an 
instrument to obtain victory on the battlefield and the treaty itself, an almost construction site in constant search for 
practical demonstration and verification of the theory. The elaborations and continuous research on the quality of 
buildings are continually verified in practice, that thus becomes a means of proof and confirmation of theories and 
thoughts. The drawings, an integral part of any treatise, are, in part, survey obtained from the fortifications realized, 
as a direct and truthful demonstration of the building systems, which, in part, are theorizations based on practice and 
represented with geometry. The analysis of the treaty of Francesco di Giorgio Martini can, therefore, stand as a valid 
support in the study of fortified architecture suitable for the knowledge, protection and its recovery, the understanding 
of certain choices, constructive techniques and meanings for the architectural elements. 
The path of knowledge of the fortified architecture in southern Albania, a territory characterized by an orographic 
conformation composed of mountain peaks, with large valley floors that bevel into plains along the coasts, deepens, 
through the actions of drawing and survey of the artefacts in the manors' sites in the coastal towns of Porto Palermo,
Saranda and Butrint (Fig. 1). The castle of Porto Palermo (Fig. 2) rises along the southern coast of the Albanian
territory on a peninsula facing west within the homonymous bay. The construction dates back to 1804 and is part 
of a network of defensive structures designed to provide shelter and defence for a conflict with the Turkish people.
The structure, triangular in shape with three hexagonal towers arranged in the corners, is dominated by large
protective battlements of the stronghold and the ramparts themselves, equipped with loopholes and cannons. The 
main entrance is characterized by a portal placed to the east, surmounted by a balcony. The castle is two floors above 
ground: the ground floor is characterized by barrel vaults with numerous interior spaces such as rooms, storage rooms 
and a mosque; and the stronghold, above the first floor, which is accessed via steep stone stairs, was the element of 
deposit of the war elements and, at the same time, the space for attack.
The castle of Saranda (Fig. 3), however, was connected to the castles of the coast such as Porto Palermo to the north 
and Butrint to the south. It stands on a hill in the eastern part of the town of the same name, in front of the Greek 
island of Corfu. This position, with a view of the entire gulf and the hinterland, guaranteed the structure complete 
control of the territory. Composed of a quadrangular plan with four circular towers placed in the corners and a central 
building raised above the outer walls is, nowadays, in a strong state of decay.  There are few traces of the external walls, 
such as the southern towers with loopholes and battlements and the portion of the eastern entrance consisting of a 
round arch in white stone.
The fortification system on the Unesco site of Butrint is different, and survey was performed on the Triangular
Fortress, the quadrangular Tower, the Venetian Castle and on the Castle of Ali Pascià (Fig. 4). The ancient center
of Butrint offers readings that date from the ancient world to the present day, with textures of images and drawings of
precious references for the Mediterranean societies. In particular, the archaeological site was declared by Unesco a 
World Heritage Site in 1992 and registered in the list of Danger Heritage in 1997. The site, which extends on a hilly

Fig. 1 - The bay of Porto Palermo,
view of the peninsula with the castle.

 Fig. 2 - The castle of Porto Palermo,
plan share + 7 m.
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peninsula in the south west of Albania on the border with the Greek state, includes some monuments that refer 
to more than two millennia, beginning with the Hellenistic temples of the fourth century. B.C. to the Ottoman
defence systems of the early nineteenth century. The city was equipped with high defensive walls along the
perimeter, terrestrial and marine, consisting of stone blocks of polygonal shape chiseled and laid dry. The entrance 
was guaranteed through five gates guarded by watchtowers, of which the quadrangular tower is still visible today. A 
three-stores structure overlapped of which a base part was used as deposits; the first floor covered by a barrel vault 
and accessible by an external staircase and connected to the tower by a wooden drawbridge; and an overhead guard
terrace of size 6 m for 6 meters with loopholes and gunboats. Of great architectural and structural importance is 
the Skea gate, mentioned by Virgil on the occasion of the arrival of Aeneas, which is located in the eastern part of 
the wall. Five meters high and just over two meters wide, it is presumed to have had protective metal shutters. The 
Lion's Gate, on the other hand, takes its name from the base relief engraved on the weighty stone architrave depicting 
a lion that breaks an ox. At the top of the hill, rises the castle built in the Venetian era and now used as a museum. 
From the Unesco site guarding the Vivari Canal, stands the castle of Ali Pasha: the fortified quadrangular structure 
with four towers, two of which circular in the west, and two squares in the east; two entrances, one in the north, with
access to a vaulted storage room and one in the east to the mainland. The aforementioned channel of the Vivari, which
constituted the maritime access route to the city of Butrint, was also protected by the Triangular fortress. A triangular 
castle (Fig. 5) with three circular towers crenelated in the three vertices and three buildings inside: one circular. one 
square and the other. rectangular. Of the original structures there are traces of the two towers towards the east, more 
exposed to the attacks, and the walls that have undergone invasive restoration.
 
CONCLUSIONS 
The reading and survey activities on the castles in southern Albania focused on the collection of general data,
historical elements, many of which are traced from unpublished sources, historical and current photographic
documents and manual and instrumental surveys on individual architectural artefacts. 
Particular attention has been paid to the architectural structures and defence elements, such as the gunboats or
helmsman, the openings in fortifications that are used for artillery sites in the most convenient places or in the
bastions; many of them characterized by a neck and deep knee pads designed to defend the lower part of the human 
body. The stratifications of castles' structures have aroused considerable interest: this overlap due, as is well known, 
from the adaptation of the fortifications to the siege war, since the military convenience of neglecting the ancient 
and weak walls of linear form, was recognized as having led to the reinforcement and redesign of regular polygons 
with bastions at the top. The bastions or bulwarks replaced, therefore, the towers and the relative straight wall of the 
connections called curtains. This system of curtains and bastions, called the bastioned order, allowed the enemy who 
approached it to fall down on the side of the structure and is a characteristic element common among the castles of 
southern Albania.

Fig. 3 - The Venetian castle of Butrint
 seen from the west.

Fig. 4 - The triangular fortress,
seen from the north.

Fig. 5 - The triangular fortress,
plan elevation + 1.20.
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AUTOMATED PREPROCESSING OF
VIRTUAL 3D BUILDING MODELS FOR FLOW SIMULATIONS
Raul Piepereit1 and Margitta Pries2

KEYWORDS: 3D City Models, CITYGML, BRep, Automated Preprocessing, Simulations.

INTRODUCTION
Over the past decades, the versatility of 3D city models has been increasing. Applications for such models range 
from simple graphic visualizations to complex numerical simulations [cf. 01]. For the latter, it has to be taken into
consideration that not only a 3D city model is needed, but also a corresponding CFD (computational fluid dynamics) 
mesh. The quality of the mesh depends on the elements of the buildings’ geometry which can have several negative 
impacts on the mesh creation and the simulation (e.g. high computation time; failure of mesh generation). Because 
of that, it is not uncommon that city models have to run through several preprocessing sequences before they can 
be used in simulations. These processes generally involve an extremely high manual and therefore uneconomical 
effort. Our goal is to reduce this manual effort, by implementing and combining different automated preprocessing
strategies, such as Boolean operations, Minkowski sums, sweep-algorithms, as well as algorithms making use of
freeform-surfaces.

RESEARCH
Advanced technologies such as aerial laser scanning and dense image matching have made it possible to create virtual 
3D city models with a high degree of automation. Consequently, the availability of such models has been increasing 
rapidly in recent years [cf. 02]. The data format used frequently for storing and exchanging virtual city models is the 
well-established OGC standard CityGML. In this standard, the building models’ geometry is defined by polyhedrons 
[03]. This data format is well suited for documentation, distribution and spatial analysis of geo data (cf. Fig. 1). It is 
not, however, automatically suited for engineering tasks such as CFD (computational fluid dynamics) simulations.

Fig. 1 - CityGML model of Friedenau, a district in Berlin (cf. https://daten.berlin.de/datensaetze).
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As was mentioned in the Introduction, a good CFD mesh is needed for simulation purposes [cf. 04], as it can increase 
the convergence, speed and accuracy of the simulation. A mesh of poor quality, on the other hand, can falsify the 
outcome of the simulation. These meshes of poor quality can occur, because automated meshing tools of common 
simulation software use the edges of the underlying polygons for the boundaries of their mesh cells. Polygons with 
short edges create small or narrow mesh elements which should be avoided, as too many or too small elements lead 
to a high computation time and the system of equations to be solved tends to be prone to failure. There are several 
reasons that cause the existence of unnecessary narrow polygons.

1. Building models with a high level of detail, for example,
might contain elements, such as overhanging roofs, doors, 
windows, and chimneys etc., that increase the amount of 
small edges in the geometry and, therefore, must be removed.

2. Round surfaces are approximated by several narrow poly-
gons, as the original geometry of a building model is saved 
in a polyhedral form without using freeform surfaces, as can 
be seen in Fig. 2.

3. Adjoining buildings (as depicted in Fig. 3) might create ad-
ditional small elements (e.g. due to a small offset between 
adjacent surfaces).

Small polygons themselves are not the only reason that can cre-
ate problems for meshing tools. Gaps between houses or poly-
gons with sharp angles, for example, might cause the meshing 
tool or the simulation to fail and have to be addressed as well.
Without preprocessing existing city models, it is practically
not possible to obtain meshes suited for simulations. Our
research goal is to create a set of algorithms which automatically
preprocess city models for simulations, as this process generally 
involves an extremely high manual and therefore uneconomical 
effort. To obtain more control over the buildings’ topology and 
geometry, we begin by converting CityGML models into a CAD 
BRep data structure.
In the following, we shortly introduce five algorithms that can 
be used for automated preprocessing of virtual building models.
These algorithms were created and adjusted to our purposes as a 
preparation for this project.
To ensure a functional interaction between these algorithms during preprocessing, another fine tuning was and still 
is necessary. Once this is accomplished completely, a smooth implementation into the procedure of preprocessing 3D 
models is possible. These algorithms are no longer standalone solutions, they now interact with and depend on each 
other as they run through several iterations. The newly obtained set of preprocessing algorithms creates a system that 
increases the automated simplification drastically.3

1. Merge Edges and Faces: An easy but very important way to simplify building models, is to merge the edges and 
faces respectively, which are connected to each other and are, within a certain threshold, collinear or coplanar.

2. Boolean Operations: The basic operations of Boolean algebra are conjunction, disjunction and negation. For our 
purposes, we only need the conjunction. The union-operator of the c++ library CGAL can be used to merge 
buildings and building parts that are connected. As a result, other algorithms can be applied to more than just 
one single building at a time, but rather to several buildings of a whole city block at the same time, for example.

3 For the automated preprocessing to work properly, we presume the building models (or their building parts) to be watertight and valid (e.g. the 
CityGML model has no degenerated polygons).

Fig. 2 - CFD mesh example of a virtual building model.

Fig. 3 - Several adjoining buildings.
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3. Minkowski Sum and Difference: Using these operations, gaps and holes within a building can be closed. As a first 
step, the dilation of a building is calculated and created using the Minkowski sum. Employing the Minkowski 
difference, the erosion of the object is then calculated and created. Combining the Minkowski operations and the 
Boolean conjunction makes it possible to obtain the same results with building blocks. The Minkowski sums, like 
the Boolean operations, are implemented in CGAL and were documented in [05].

4. Sweep-plane Algorithm: The sweep-plane algorithm [cf. 06] iteratively eliminates edges with a length below a
predetermined threshold, by moving corresponding faces along their normal direction into or out of the
building. This algorithm allows for a specific elimination of small elements as they occur in offsets, bulges or 
corner offsets, for example. Building features, such as doors, windows or chimneys, can be erased in this manner 
as well.

5. Coons Algorithm: Round surfaces of buildings in CityGML are approximated by a plurality of narrow polygons.
An approach to use the method of Coons in order to replace those polygons by freeform surfaces, such as
B-Splines, is described in [07]. Using freeform surfaces enables the meshing tool to adjust the size of the mesh 
elements more freely. The Coons algorithm ensures that the models remain watertight.

After the above mentioned preprocessing, we export the model as a STEP file. These STEP models can then be loaded 
into simulation software (e.g. ANSYS FLUENT) and simulations, such as the wind simulation depicted in Fig. 4, can 
be run.

Fig. 4 - Example of a wind simulation.

CONCLUSIONS
By processing the geometry of virtual city models, the quality of the derived finite element mesh can be significantly 
improved. We concentrate on automatic preprocessing of city models with regard to simulations. Implementing the 
above mentioned approaches significantly reduces the manual effort required for preprocessing. By combining several 
of these approaches, a higher efficiency can be ensured. For certain complicated geometries, however, it must be noted 
that there is a need for further development of the above mentioned algorithms. For others, different approaches have 
to be designed. In addition, studies have to be carried out to determine the effects of the automated processing on the 
desired simulations.
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DIGITAL FOLDING DESIGN
AND DEFORMATION TEST  OF ELEVEN ORIGAMI TESSELLATIONS
Samanta Aline Teixeira1,Thaís Regina Ueno Yamada2 and Galdenoro Botura Junior3

KEYWORDS: Origami Tessellation, Digital Folding Design, Deformation Test, Innovation Case Study,
Origami Design.

INTRODUCTION
Researches on origami design presents several innovations for design and science, such as: automotive airbags [01], 
space telescopes [02], architectural structures [03], furniture [04] and self-folding robots [05, 06]. This article presents 
a deformation test of eleven origami tessellations, comparatively analysing their folds geometry and their interaction
with the compression levels. The aim of the study is to contribute to the improvement of the origami design
methodological basis, seeking, in practical and observational terms, planned geometric elements that, when folded, 
can be applied in products easier to compact and less complex to be manufactured in series.

RESEARCH
Origami design is based on planning the crease patterns. The folding map allows any three-dimensional structure to 
be sculpted from a flat material [06]. Starting from what is nowadays called active origami, i.e., the creation of func-
tional structures through folding design, this abstract presents a deformation test of eleven origami tessellations geom-
etry, electing the best and worst folding patterns based on two criteria: higher level of compression and less structural 
complexity. With this goal in mind, the methodology of data collection was performed by manual preparation of test 
specimens and measuring them when folded. The crease patterns design was built into a vector drawing software (Fig. 
1). The deformation test of six origami tessellations was already performed in a previous article [07], and five new 
origami patterns are now added to these data and redesigned from important origami design publications [08, 09].
The grid base for the drawings was made from the repeating module of standards with the fixed height of 3 centi-
metres, and it can vary the width and fit of the modules within the total paper size of 12 centimetres. The finished 
origamis can be seen in Fig. 2.
After folding to its crease pattern, each origami was measured in its compact final forms under the x (length),
y (height) and z (depth) axes. From these measurements, the total volume of each tessellation was calculated, where
it was possible to list the more and less compact patterns, according to Table 1 and Fig. 3.
We analyse Table 1 and list the more compact patterns in four criteria: smaller compaction alone in the x (length),
y (height) and z (depth) or total volume axes. Best illustrated in  Fig. 3, the most compact patterns on the x-axis are 
A (blue), B (brown), F (orange), and H (red), tied with 0.5 cm. The E (light blue) pattern is the most compact on 
the y-axis, with 0.5 cm. The H pattern (red) is the most compact on the z-axis, with 0.4 cm. H pattern is also the 
most compact standard in total volume, at 1.54 cm. The patterns with the smallest measures on isolated axes are not
necessarily the more compact ones in the total volume. This characteristic demonstrates that there is a more
substantial complexity in the all sample than variables can reveal in isolation. Apart from this, compaction design in 
the independent axes can support several product designs, such as cardiac stents, where initial (compact) and final 
(expanded) occupancy require measurement accuracy for different application situations.

1 São Paulo State University, Brazil (samanta.teixeira@unesp.br)
2 São Paulo State University, Brazil (thaisueno@faac.unesp.br)
3 São Paulo State University, Brazil (galdenoro.botura@unesp.br)
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Fig. 1 - Vector drawing of crease patterns. 

Fig. 2 - Folded Tessellations.
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Table 1 - Spatial measurements of tessellations.

Crease Pattern Length (cm) Height (cm) Depth (cm) Volume (cm³)

A 0.5 1.5 7.2 5.40

B 0.5 2.2 5.5 6.05

C 6.0 1.5 7.2 64.80

D 7.5 1.0 6.8 51.00

E 3.5 0.5 3.7 6.47

F 0.5 0.7 7.4 2.59

G 9.3 0.9 8.0 66.96

H 0.5 7.7 0.4 1.54

I 6.0 6.5 1.0 39.00

J 6.5 5.5 1.0 35.75

K 6.5 6.5 1.0 42.25

Fig. 3 - Measurements on the x, y and z axes.

The next step of the analysis is the number of folds in the tessellations. This step analyses the level of complexity
required for the reproduction of each crease pattern and can be observed in Table 2.

Table 2 - Number of folds of tessellations.
Crease Pattern Number of Folds (Valley and Mountain)

A 130

B 52

C 163

D 220

E 94

F 318

G 122

H 754

I 502

J 221

K 204
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According to the total count of folds (mountains and valleys folds), the sequence of the patterns with the highest to 
the lowest numbers of folds are these: H - I - F - J - D - K - C - A - G - E and B. Pattern H has the largest number 
of folds: 754, so it is the most complex to be reproduced. Pattern B is the least complex, because it has the smallest
number of folds: 52. Of all patterns, nine were constructed from crease patterns already designed by origami artists
and researchers such as Jun Mitani, Koryo Miura, Eric Gjerde, Ronald Resch, Yuri and Katrin Shumakov. The H
pattern, created by the authors of this research, presented prominent measures in comparison to the others. The H
pattern is the most compact in the total volume and the most complex, because it has the largest number of folds.
However, the directly proportional relationship between complexity and compaction is not observed in all the
analysed patterns. As in the previous study [07], the tessellation B, i.e., Miura-Ori, remains the simplest pattern and 
has medium compaction performance, between the eleven patterns. B is the fourth most compact in total volume. In 
addition to the data presented, other variables and tests may be performed in the future. One modification that can be 
explored is the variation of geometry size, increasing the height or width without changing the design base structure. 
To better understand the behaviour of the origami tessellation design, a stress test can be added to the deformation 
test performed here. The stress test is usually carried out by means of a dynamometer [10], bringing measures of
compression and tensile forces.

CONCLUSIONS
This extended abstract presented a deformation test of 11 origami tessellations. As a result, the B pattern presented 
the simplest geometry and the H pattern presented the highest level of compaction in total volume. Future studies are
being planned to better understand the relationships between crease complexity and structural compaction.
Nowadays, the research on origami design is critical for engineering, design and science. We hope that the present 
study contributes to improve applications in technologies and product innovations.
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THE REPRESENTATION OF OBJECTS IN THE OBSERVATION DRAWING
Teresa Maria da Silva Antunes Pais1

KEYWORDS: Observation Drawing, Geometric Solid, Polyhedron, Sketch.

INTRODUCTION
In architecture training, Drawing is one of the curricular units taught in the first year of most courses.
According to the study carried out in 2007 [01], there are many affinities in the contents taught in this discipline in the 
various Faculties in Portugal, for example, the contact with the instruments and techniques, the objectives established 
or the approach to subjects such as objects, human figures or space. In terms of objectives, there are also similarities,
notably, the development of the ability to observe, the dexterity, the knowledge of the very act of drawing or the
sensitivity regarding aesthetic values.
As far as the exercises are concerned, the lecturers who participated in that study increase the difficulty of the topics
throughout the school year. In general, assignments begin with simple tasks, such as the representation of small 
scale objects or spatial situations of level with a single vanishing point. Towards the end, the topics focus on the
representation of the human figure or of space with a certain degree of complexity.
One of the subjects that is often dealt with, in the first classes of the different schools, is that of geometric solids. At 
the beginning of this school year, the first-year students of Drawing of the Integrated Master's Degree in Architecture 
of the University of Coimbra were invited to represent several solids: associated parallelepipeds, irregular polyhedra
and regular polyhedra, in order to develop a process of comparative analysis.
The objective of the experiment was to compare the typical reactions to these families of objects as regards
formal, procedural and plastic aspects, while understanding the advantages of each reaction in the development
of skills related with the qualification of the drawings. This is particularly relevant in terms of the support
occupation, perspective, proportions, or other aspects that are indispensable for a drawing to be made with intent
and responsibility.

RESEARCH
In November 2018, it was suggested that 40 students draw some geometrical solids. For this purpose, a number of 
cardboard objects resulting from the association of parallelepipeds, whose proportions were carefully weighed, were 
used, so that the relationship between the measurements of the edges and the faces was easily perceived (Fig 1, left).
Students were at a level of development corresponding to the beginning of the second programme phase, and it was 
defined that students should make "sketches", a drawing process that is characterized by the paused graphic record, 
resulting from rhythmic and ambulatory gestures. The construction of the drawing is made from the general to the 
particular, implying a cognitive disposition of analysis and investigation of hypotheses, of perceptual adjustment to 
principles of morphological and/ or light similarity [02].
Each student made four sketches, each one representing a single different solid. It was established that each drawing 
should be carried out on an A4 format, with graphite, in a period of about 20 minutes.
As an element of research support, students were asked to capture their point of view for each of the solids repre-
sented by means of photography before starting their work, so that the photographs would serve as reference in the
subsequent evaluation of the drawings.

1 University of Coimbra, Portugal (tpais@darq.uc.pt)
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Fig. 1 - left: In the first group of exercises, students sketched cardboard objects resulting from the association of parallelepipeds, whose
proportions were carefully conceived; middle: In the second group, the students represented irregular polyhedra, constructed by them within

the scope of one of the practical exercises of Geometry; right: In the third group of exercises, the students represented regular polyhedra.

In the following class, the same students were suggested to make four more sketches.
The statement of the exercise remained, with the difference that the motives to be represented were some irregular
polyhedra that had been constructed by them in one of the practical exercises developed in the course unit of
Geometry (Fig. 1, middle).
The experiment ended in the following class with a third group of exercises, similar to those previously performed, 
except for the theme to be represented as regular polyhedra (Fig. 1, right).
After collecting and digitizing all the works (examples in Figs. 2 to 5), the next step was to generate instruments to 
analyze the drawings that fulfilled the established objectives and to select the parameters for their evaluation: the
support occupation, the mastering of the mode, the ability to synthesize and the mastering of the perspective, form 
and proportions.
The process of comparative analysis of the drawings produced the results which are described below.

SUPPORT OCCUPATION
In the initial stages of learning, the support occupation is not, in general, an aspect to which the students attach great 
importance [03](Edwards, 1999).
In all the exercises proposed in this research, it was previously established that the scale of the representation would 
have to fit the size of the sheet of paper, meaning that students should reserve the distance of 2 cm between the limits 
of the image and the limits of the paper.
The analyzed drawings indicated that, in general, the students had some difficulty in carefully completing the support, 
both in the sketches made in experiment 1, 2 and 3 - with a tendency to draw smaller objects than was supposed. It was 
also observed that the students who were able to size the drawing to comply with the distance of 2 cm in experiment
1 were the same who could do it in experiments 2 and 3 (Fig. 2).

MASTERING THE MODE
In the first sketching exercises, mastering the sketch mode was no easy task. Students show a tendency to delimit 
shapes using the line, which tends to be clear and clean without hesitation, and to construct the drawing as a se-
quential sum of isolated elements, instead of evolving from the general to the particular [04]. In general, students do
without auxiliary lines, and tend to simplify the process of assessing distances, angles and alignments, typical of this 
mode.
The analyzed data showed that the representation of the irregular polyhedra was the one in which the students had
less tendency to make auxiliary lines, noting a greater propensity to use a process of image construction in which 
the evolution is made from particular to particular. On the contrary, the objects of experiments 1 and 3, especially in 
the first (Fig. 3), were the ones that motivated the construction of the drawing from the general to the particular, in 
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a process of revision and gradual correction, overlapping and adding lines or patches to the model, and correcting 
information - indicating a mastering in the most effective and conscious way.

SYNTHETIC ABILITY
This concept involves the effectiveness that a given work has shown in terms of the choices made and the graphic
options taken by the author, in the representation of certain forms or materials [05].
After the drawings were analyzed, it was found that there is a significant difference between the results obtained in 
the various experiments. The solids that motivated less advantageous results were the irregular polyhedra. On the
contrary, the associated parallelepipeds and the regular polyhedra were those that provided for tendencies that showed
more developed competences in the effectiveness of the representation of forms (Fig. 4).

MASTERING THE PERSPECTIVE
In order to evaluate the performance of the students regarding this aspect, it was assessed in which of the exercises 
they showed more difficulty in correctly evaluating the perceived angles.
The results between the sketches of the three experiments were very close. It was also observed that the students whose 
drawings presented a more discrepant angular evaluation between the angles perceived and those drawn, were the 
same in the various experiments.

MASTERING THE FORM
Form means the character assumed by the particular arrangement of the parts of a set that constitutes the image  [05]. 
It was found that the polyhedra represented in experiment 2 were those in which the students showed greater
difficulties in understanding the morphology, whereas the objects of experiment 1 and 3 seem to have motivated 
the students to understand the forms and, therefore, the structural rules and geometric properties inherent in the
objects to be represented.
The collected data also point to the tendency of the students to differentiate between the faces of the solids with
indication of light and shadow values, especially in the outlines of experiment 3, of greater formal complexity (Fig. 5).

MASTERING THE PROPORTION
Mastering the proportions means the ability to relate the measures of the various parts that constitute the object to be 
represented [06].
The drawings showed, unequivocally, that students are able to gauge more accurately the proportions of objects whose 
measurements are generated by clear geometric rules, which is the case of the objects of experiment 1 and the regular 
polyhedra of experiment 3, with emphasis on the former.

Fig. 2 - Exercises performed by one of the participating students, as an example of the response to experiments 1, 2 and 3.
In this case, the student was able to carefully occupy the sheet of paper in all experiments.
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Fig. 3 - Exercises performed by one of the participating students, as an example of response to experiments 1, 2 and 3.
The student used auxiliary lines to understand the structure of the object only in the drawing performed in experiment 1.

Fig. 4 - Exercises performed by one of the participating students, as an example of response to experiments 1, 2 and 3.
In this case, the student was successful in representing all the forms requested.

Fig. 5 - Exercises performed by one of the participating students, as an example of response to experiments 1, 2 and 3. The work
of this student shows the tendency to value aspects related to light and shadow only in the drawing corresponding to the experiment 3.
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CONCLUSIONS
Concerning the occupation of the support and the mastering of the perspective, the results suggest that the formal 
characteristics of the represented objects do not influence the ability to fittingly occupy the support, or to control the 
perspective representation. It can be concluded that any type of solid used in the various experiments provides a good 
exercise, either for the adequacy of the scale of the drawing to the dimension of the support, or to reduce the tendency 
to emphasize the angles, regardless of the formal characteristics presented.
As for the ability of synthesis and the mastering of mode, the data collected indicate that irregular objects are those 
that, on the one hand, make it more difficult to lead an observer to the unequivocal identification of the objects
represented and, on the other, provide the evolution of the image "from the general to the particular", according 
to hypothesis and correction tests. It follows that solids that do not have an intelligible relationship between the
measurements of the sides or a clear or rational geometric structure inherent in their morphology, are less conducive 
to the development of these competences.
Also in the mastering of the form and proportions, it was observed that the difficulties are more accentuated when 
it comes to the representation of solids that present random measures, as in the case of those used in the experiment 
2. The problems generally result from the sequential sum of parts and the difficulty of establishing relations to help 
control and understand the relationship between the whole and the parts.
Regular polyhedra, especially those with a high number of faces and greater formal complexity, gave rise to the
differentiation of planes through light and dark notes, a feature that can be used as a motivation to view reality as 
variations of luminosity, providing an introduction to the theme of light and shadow.
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TOOLS OF IMAGINATION
Today, we can fabricate anything. Digital fabrication now functions at both the micro and macro scales, combining
multiple materials, and using different materialization processes. Complexity and customization are no longer
impediments in design. 
While we can fabricate anything, design arguably appears confined by our instruments of design: we can only design 
what we can directly represent. If one looks at 3D-printed artifacts, there is oftentimes a discrepancy between the 
wonder of technology, and the conventionalism of design. It seems that our current parametric approaches operate 
within a too tightly prescribed scope. We appear unable to exploit the new freedom that digital fabrication offers us.  
In short: we can currently fabricate more than we can design.
What is needed is a new type of design instrument. We need tools for search and exploration, rather than simply 
control and execution. We need to redefine the relationship of the designer with the machine, thereby gaining entirely 
new spatial and haptic experiences and engaging design environments.

BEYOND THE PARAMETRIC
Traditionally, architects have designed primarily
using plans and sections. The computer has allowed
architects to transcend the plane and design directly 
in three dimensions. Recently, three-dimensional
modeling software began to incorporate parametric 
design tools, and these are prevalent in many architec-
ture schools and design practices today. 
These parametric approaches enable an easier manipu-
lation of free-form geometries, and facilitate working
with repetitive yet variable geometries. They have 
brought us designs with complex curvatures and with 
highly varied façades. 

And yet, despite these formal freedoms, parametric modeling is essentially a constraint-based technique: every 
rule must be defined explicitly, and the model is established a priori. Parametric modeling works within a finite,
prescribed, limited scope, rather constructing an open-ended solution space. As such, this approach implies thinking
in terms of categories. Rather than allowing us to design any form that is conceivable - or even those that are still
inconceivable - parametric modeling has led to designs that fall within fairly relatively range and are easily identifiable 
by their generative processes. These designs are often simply categorized as “parametricism”.

TOWARDS AN AUGMENTED IMAGINATION
Yet the promise of today’s digital technologies is that they allow us to escape existing categories. With these tech-
nologies, we no longer require descriptive words or labels, as we have the potential to create the previously unseen.
Effectively, we can build tools to augment our imagination.
While largely amorphous, these new tools exhibit a primacy of the procedural over the parametric. For instance, we 
can conceive of simple procedures that continuously repeat a geometric operation to transform a basic volume into 
a highly articulated and elaborate form. By repeating this operation millions of times, the computer arrives at forms 
with minute details at the threshold of perception - algorithmic artifacts that would be almost impossible to draw by 
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Digital Grotesque II, 2017.

hand or traditional means. A simple and rational process can thus generate complex and seemingly irrational forms. 
This procedure can be rerun, using slightly different parameters, to produce countless permutations of a design. Each 
permutation has features in common with its siblings, while also having entirely unique traits. These permutations 
can be selected and crossed with each other to produce yet further variations, thereby successively developing the
design. 
While there is no randomness necessarily involved in these processes, there are so many individual steps in the
procedure - so many possible interrelations - that the results are not entirely foreseeable. The computer obtains the 
power to surprise us. It generates forms within the space of what is possible that we would not likely have conceived of 
or found. Its output remains completely deterministic, while resisting both predictability and attempts at explanatory 
reductionism.
These tools redefine the process of design: the architect works in an iterative feedback loop with the machine,
moderating processes, and incorporating feedback, surprises and proposals. Knowledge and experience are acquired 
through search, in a process that oftentimes resembles curation.
By designing in this manner, architects take the unusual step of ceding control over the exact nature of the forms
they create. The computer, as a design partner, gains a degree of autonomy. The generated forms oftentimes manifest
this tension of control and surprise. They are situated somewhere between chaos and order... both natural and
artificial... neither foreign nor familiar. 
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CELEBRATING THE UNFORESEEN
As of yet, we have countless tools to increase our efficiency and precision. Why not also create tools that serve as our 
muse, that inspire us and help us to be creative? Tools to draw the undrawable, and to imagine the unimaginable
More than ever, seek an intuitive collaboration and productive dialog with the machine in the design process. We need 
to beyond a rational instruction and arrive at an intuitive interaction. It is Nicholas Negroponte, who in his book The 
Architecture Machine envisaged such a partnership:

"Let us build machines that can learn, can grope, and can fumble, machines that will be architectural
partners, architecture machines."

What we stand to gain are entirely new spatial and haptic experiences. A playful design that stimulates the senses, 
elicits curiosity, and invites interaction. A design environment that simultaneously allows control and surprise, and 
that embraces and celebrates the unforeseen.

Muqarna Studies, 2019.



076

GEOMETRIAS’19: POLYHEDRA AND BEYOND
FCUP | PORTO | 05 . 06 . 07 SEPTEMBER 2019
GEOMETRIAS’19: BOOK OF ABSTRACTS
ISBN: 978-989-98926-8-2 | https://doi.org/10.24840/978-989-98926-8-2



GEOMETRIAS’19: POLYHEDRA AND BEYOND
FCUP | PORTO | 05 . 06 . 07 SEPTEMBER 2019

077

GEOMETRIAS’19: BOOK OF ABSTRACTS
ISBN: 978-989-98926-8-2 | https://doi.org/10.24840/978-989-98926-8-2

FRIDAY, 06 SEPTEMBER 2019

PLENARY SESSION 03: KEYNOTE SPEAKER 

PS 03 | RINUS ROELOFS
Helices in Uniform Polyhedra .................................................................................................... 078

PAPERS' SESSION: POLYHEDRAL THEORY
SESSION MODERATORS: HELENA MENA MATOS and VERA VIANA

PP 05 | Ulrich Reitebuch, Henriette-Sophie Lipschütz and Konrad Polthier (Germany) 
Filling Space with Gyroid Symmetry ......................................................................................... 081

PP 06 | Marija Obradović and Mišić Slobodan (Serbia) 
Concave Deltahedral Rings
Based on the Geometry of the Concave Antiprisms of the Second Sort  .................................... 085

PP 07 | Izidor Hafner and Mateja Budin (Slovenia) 
Dissections of Cubes and Golden Rhombic Solids ..................................................................... 091

PP 08 | Günter Weiss (Austria) 
Equifaced Simplices and Polytopes ............................................................................................ 095

PP 09 | Alexei Kanel-Belov, A.V. Dyskin, E. Pasternak and Y. Estrin (Israel, Australia) 
Topological Interlocking of Platonic Bodies:
Geometry Enabling the Design of New Materials and Structures ............................................. 097

PP 10 | Dirk Huylebrouck (Belgium) 
An Euler-Cayley Formula for General Kepler-Poinsot Polyhedra ............................................ 099

PP 11 | Andrés Martín-Pastor (Spain) 
Polyhedral Transformation Based on Rotational Quadratic Surfaces Properties ..................... 105

PAPERS' SESSION: ILLUSTRATING POLYHEDRA 
SESSION MODERATOR: VERA VIANA

PP 12 | Leonardo Baglioni and Federico Fallavollita (Italy) 
The Construction of Regular and Semiregular Polyhedra Through the Synthetic Method ....... 113

PLENARY SESSION 04: KEYNOTE SPEAKER

PS 04 | HENRY SEGERMAN
Artistic Mathematics: Truth and Beauty ................................................................................... 120



078

GEOMETRIAS’19: POLYHEDRA AND BEYOND
FCUP | PORTO | 05 . 06 . 07 SEPTEMBER 2019
GEOMETRIAS’19: BOOK OF ABSTRACTS
ISBN: 978-989-98926-8-2 | https://doi.org/10.24840/978-989-98926-8-2

RINUS ROELOFS
Art about mathematics.
After studying mathematics for a couple of years (applied mathematics at the University
of Twente, Enschede), I decided to switch to the school of arts. In 1983, I started my 
career as a sculptor. Inspired by the works of M.C. Escher and Leonardo da Vinci,
my works became more and more some kind of expression of my mathematical ideas.
The main subject of my art is my fascination about mathematics - to be more precise: 
my fascination about mathematical structures. Mathematical structures can be found 
all around us. We can see them everywhere in our daily live. The use of these structures 
as visual decoration is so common, that we don’t even see this as mathematics. But 
studying the properties of these structures and, especially, the relation between different 
structures can bring up questions. Questions that can be the start of interesting artistic 
explorations.
Artistic explorations of this kind mostly lead to intriguing designs of sculptural objects, which are then made in all 
kind of materials, like paper, wood, metal, acrylic, etc. It all starts with amazement, trying to understand what you see. 
Solving those questions often leads to new ideas, new designs.
Since I use the computer as my main sketchbook, these ideas come to reality, first, as a picture on the screen. From 
there, I can decide what the next step towards physical realization has to be. A rendered picture, an animation or a 
3D physical model made by the use of CNC-milling, laser cutting or rapid prototyping. Many techniques can be used 
nowadays, as well as many different materials. But it is all based on my fascination about mathematical structures.

PLENARY SESSION
KEYNOTE SPEAKER



GEOMETRIAS’19: POLYHEDRA AND BEYOND
FCUP | PORTO | 05 . 06 . 07 SEPTEMBER 2019

079

GEOMETRIAS’19: BOOK OF ABSTRACTS
ISBN: 978-989-98926-8-2 | https://doi.org/10.24840/978-989-98926-8-2

HELICES IN UNIFORM POLYHEDRA
The way most people know about polyhedra is through physical experience (seeing, feeling) instead of theoretical 
understanding. To have a visual presentation of polyhedra seems to be necessary for the understanding of the objects 
in this field of mathematics. Maybe more important than the real three-dimensional models, are the two-dimensional 
pictures of these shapes. At some points in history, artists added new ideas for presenting polyhedra in such a way that 
certain properties could be explained. Leonardo da Vinci made clear drawings of the elevated polyhedra as described 
by Luca Pacioli; Albrecht Dürer explained in his drawings how polyhedra can be made from 2D plans; and M.C. 
Escher found nice ways to present the complex star-shaped polyhedra defined by Kepler. All these 2D representations 
were meant to show certain properties of the polyhedra.
In my presentation, I want to show how the helix can be used to explain the complex uniform polyhedra with, in most 
cases, intersecting faces. Starting with the Poinsot polyhedra, which I will show with the use of a method that I called 
“helixation”. This is a new dynamic way to visualize the structure of a polyhedron, by showing how it can be generated. 
With this technique, we can also visualize things like duality.
In 2003, Branko Grünbaum described several ways to construct “new” uniform polyhedra. And again, there is a need 
for visualization of these new polyhedra. Also, in this case, the helix turned out to be a good help to come to a clear 
visualization. In some cases, I used the shape of a torus knot, which is, in fact, a helix around a circle, to make the 
visualization.
Maybe the most important part of the talk is the use of the helix to construct a complete new group of uniform
polyhedra, which I called the helical star deltahedra.
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FILLING SPACE WITH GYROID SYMMETRY
Ulrich Reitebuch1, Henriette-Sophie Lipschütz2 and Konrad Polthier3

KEYWORDS: Space-Filling Solids, Minimal Surface, Symmetry.

INTRODUCTION
The gyroid is a triply periodic minimal surface, which belongs to the associate family of the Schwarz P and Schwarz D 
surface, and has several point reflection, rotational and translational symmetries. A discrete gyroid can be built from 
triangles - it is a discrete surface with the same symmetries as the smooth gyroid surface, and it is discrete minimal.
Each, the gyroid and the discrete gyroid, split 3D space into two interlinked half spaces, which are symmetric to each 
other. We present a pair of solid building blocks, together filling space, each of them filling one of the half spaces
created by the discrete gyroid.

MINIMAL SURFACES
In differential geometry, a surface that locally minimizes the surface area, is called a minimal surface. Many minimal 
surfaces are highly symmetric, having rotational, translational, mirror reflection, and point reflection symmetries.

DISCRETE MINIMAL SURFACE
A discrete surface consists of vertices, straight edges and planar polygonal faces. We call a discrete surface “minimal”, 
if the surface area cannot be decreased by moving a single interior vertex, keeping all the other vertices fixed [01].

THE GYROID SURFACE
The gyroid is a triply periodic minimal surface, which belongs to the associate family of the Schwarz P and Schwarz 
D surface. It was found by Alan Schoen [02] and proved to be embedded in 3D Karsten Große-Brauckmann and 
Meinhard Wohlgemuth [03]. The gyroid has several point reflection, rotational and translational symmetries but, in 
contrast to the Schwarz P and Schwarz D surface, it does not have any mirror reflection symmetries.
The gyroid splits 3D space into two halves, which are mirror symmetric to each other.
A discrete gyorid surface can be constructed from triangles such that it is a discrete minimal surface and has exactly 
the same symmetries as the smooth gyroid surface [04]. Translational units of the smooth and discrete gyroid surface 
are shown in Fig. 1.

1 Freie Universität, Berlin, Germany (ulrich.reitebuch@fu-berlin.de)
2 Freie Universität, Berlin, Germany (henriette.lipschuetz@fu-berlin.de)
3 Freie Universität, Berlin, Germany (konrad.polthier@fu-berlin.de

Fig. 1 - Translational unit of Smooth
and discrete gyroid surface.
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SPACE-FILLING SOLIDS
We present a pair of solids, which together fill 3D space. We start with a truncated octahedron.We select a pair of
opposite hexagons, and then select a set of short diagonals in the remaining six hexagons such, that none of these has 
a common vertex with the first two hexagons and such, that the six diagonals form a cycle. There are two possible 
choices of short diagonals fulfilling these conditions.
Now we connect each of these six diagonals to the centre of gravity of the truncated
octahedron, building six triangles. The surface given by these six triangles cuts the
truncated octahedron into two solids. Each of the two solids is bounded by the six
cut triangles, one complete original hexagon and three complete squares from the
truncated octahedron, and three big and three small parts of hexagons, cut by the
selected short diagonals.
Neither of the two solids has any mirror symmetry, but they are symmetric to each other. 
The cut triangles are shown in Fig. 2 as white triangles, the remaining surface of the
truncated octahedron is shown in blue.

FILLING HALF SPACE
Using copies of just one of two solids, half of 3D space can be filled. Since all parts of the original faces of the
truncated octahedron have a mirror symmetry, the solids can be attached to each other at these faces in different 
ways, as shown in Fig. 3: attaching small (triangular) parts of hexagons, attaching squares, attaching big (pentagonal)
parts of hexagons or attaching complete hexagons. When attaching solids at square faces, there are four possibilities, 
for hexagons there are two possibilities up to symmetry. Here, we have to take care that all edges show combinations 
of faces, where a third copy of the solid can be attached to both solids. For the square, the vertex at the cut-triangle 
surface has to be aligned; for the hexagon, the squares of the two solids cannot share an edge. For the triangular 
and pentagonal faces at the original faces of the truncated octahedron, there is only one possible way of attaching a
neighbouring solid face to face.

Fig. 2 - Cutting the truncated
octahedron into two solids.

Fig. 3 - Four ways of attaching solids: At triangles, squares, pentagons and hexagons.

By these gluing rules, solids of the same type can be glued to all the faces that are not incident to the point at the centre 
of gravity of the complete octahedron, such that only these cut triangles remain unglued. In this way, the cut triangles 
form a discrete gyroid surface and one type of solid fills one of the two half-spaces bounded by the discrete gyroid; the 
other type fills the other half-space. A set of glued solids is shown in Fig. 4: the blue faces of the solids are glued and 
the white faces build the discrete gyroid surface.

CUTTING AT SMOOTH GYROID SURFACE
The same construction can be done with a curved cut surface through the truncated octahedron: if the truncated
octahedron is placed with its centre of gravity in one of the points with point reflection symmetry of the smooth
gyroid surface, the gyroid surface cuts the truncated octahedron into two parts that do not have any mirror symmetry, 
but are symmetric to each other. If the truncated octahedron has the correct scaling in relation to the gyroid surface, 
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some of the gyroid’s axes of 180° rotational symmetry
coincide with face diagonals of the truncated
octahedron, and the solids can be used in the same 
way to fill one half of 3D space, building a smooth
gyroid surface at the volume boundary. The other
solid type fills the remaining half-space. One solid 
with the smooth gyroid cut is shown in Fig. 5.

Fi. 4 - Gluing solids fills half the space;
the white surface becomes a discrete gyroid.

CONCLUSIONS
The truncated octahedron is a space-filling solid; if a tesselation of 3D space by 
truncated octahedra is scaled and positioned appropriately in relation to a discrete 
gyroid surface, the latter splits each of the truncated octahedra in the same way 
into two parts, which are symmetric to each other. Thus, each of the half-spaces 
bounded by the discrete gyroid surface is tesselated by one of the two half truncated 
octahedron solids.
If the same tesselation of 3D space by truncated octahedra is cut by the smooth gy-
roid surface, it also cuts each truncated octahedron in the same way into two solids, 
which are symmetric to each other. In this case, the cut surface is curved, and each 
of the two types of solids tesselates one of the half-space bounded by the smooth 
gyroid surface.

Fig. 5 - The smooth gyroid splits the
truncated octahedron into two solids.
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CONCAVE DELTAHEDRAL RINGS
BASED ON THE GEOMETRY OF THE CONCAVE ANTIPRISMS OF THE SECOND SORT
Marija Obradović1 and Slobodan Mišić2

KEYWORDS: Antiprism, Deltahedron, Concave, Ring.

INTRODUCTION
Concave antiprisms of the second sort (CA II) are polyhedra which, similar to convex antiprisms, consist of two 
identical regular polygons connected by a deltahedral lateral surface. The lateral surface is created by 2π polar
array of the spatial hexahedra composed of six equilateral triangles arranged around the common vertex. The term
“second sort” originates from the fact that these solids have two rows of equilateral triangles in the lateral surface. 
There is an infinite number of CA II-n representatives, some of which (with base polygons of n U {3, 4, 5...11}) are 
given in Fig. 1.

Fig. 1- Some representatives of CA II-nM.

A detailed description of the genesis of CA II, together with their geometrical properties is given in [01].
In this abstract, we search for deltahedral rings formed by a polar array of CA II’s fragments, thereby keeping the
crucial linear and angular measurements of the initial solids. Our goal is to obtain forms of a high symmetry level, 
derived from a single element - an equilateral triangle.

INVESTIGATING THE POSSIBILITY OF DELTAEDAR RINGS’ FORMATION
When forming the CA II-n, we start from the planar net of the spatial hexahedron - the regular hexagon subdivided 
into equilateral triangles. Depending on the way the net is folded, similarly to the other polyhedra of the second 

1 University of Belgrade, Serbia (marijao@grf.bg.ac.rs)
2 University of Arts in Belgrade, Serbia (slobodan.misic@fpu.bg.ac.rs)
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sort (CC II: [02]; CP II: [03, 04]), it is possible to form two types of the lateral surface. If the central vertex (G) of the
spatial hexahedron is protruding, we obtain a type with a lower height of the lateral deltahedral surface, consequently
termed minor, abbreviated as CA II-nM. If the central vertex (G) is indented, we obtain the type with a greater
height, termed major, abbreviated as CA II-nM, which is what we focus on in this abstract (Fig. 1).
The key procedure for ring formation is to bring the middlemost pair of equilateral triangles from the spatial
hexahedral cells of the two adjacent CA II-nM into the overlapping position (Fig. 2a). The planar symmetry
of the spatial hexahedron itself makes this possible. In this way, we get a new cell, a spatial decahedron (Fig. 2b),
which is a building block for a new deltahedral structure. Thereby, it takes over the measurements (points’ heights, 
angles) from the initial CA II-nM. Then, we examine which multilateral reflection of this decahedral cell (Fig. 2c) pro-
duces a closed deltahedral ring - consequently concave and of the second sort (abbreviated: CDR II) - forming a full 
circle with no partial overlaps or gaps. The final result, therefore, comes down to the polar distribution of these cells, 
with K concave antiprisms in the array, where K is an integer.
The spatial decahedral cell can be positioned so that the space it surrounds is oriented towards the interior of CDR 
II, forming a flower-like ring, which we call the case A, or towards its exterior, forming a star-like ring, called the 
case B. In both cases, these decahedral cells can be combined with one or more hexahedral cells - the fragments of
CAII-nM - between them. Given that the two different units are now involved in the ring’s construction, such cases
of CDR II are denoted by Af and Bf.

Fig. 2 - a, b) The formation of the spatial decahedral cell, c) Arraying the cells into a ring.

The CA II-nM themselves have a high level of symmetry. They are characterized by multilateral reflexive and
rotational symmetry, while in the cases with even number of base sides (n = 2t) we also encounter point symmetry. 
Each base polygon of CA II-n has n axes of symmetry. To solve the task, we take two paired CA II-nM with a common 
decagonal cell and apply successive reflexive symmetries across the corresponding symmetry axes of their polygons 
(Fig. 2c) until we close the full circle. The solutions differ depending on the selected axes of reflection. As valid, we 
adopt only those with an integer number K of the cells in the circle.
Each chosen pair of the symmetry axes intersects in the same point (A, B,…) and defines the angle of the polar array 
between them. The angle determines the number of petals in the case A, or the number of star-points in the case B. 
Instead of testing each individual axis, we use a mathematical calculation based on the trigonometry of the paired
CA II-nM’s orthogonal projections. We found formulae that define:
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 – base angles in the isosceles triangles - orthogonal projections of the CA II-nM’s faces, denoted by a;
 – the angles between the paired reflection axes of the CA II-nMs, which provide the desired solutions, denoted
by  j and w.

n − 2
6n

(1)a = π

j = π n − 2
n − 2α

(2)

w = |10a − a| (3)

Once the angles  j and w have been calculated, we determine which number k, as their multiplier, produces a full 
circle, creating either case A or B. If k is not an integer, we search for the solution by additionally multiplying it by a 
minimal integer j that results in the integer K. The value of the variable j depends on the factual axes of symmetry that 
define the angles j or w. The cases with j > 1 will be those that we have denoted by Af and Bf .
An overview of these values for the observed n U {3, 4, 5 ... 11} is given in the Table 1.

To get the true deltahedral forms, we remove all the redundant faces, such as the ones that penetrate each other or do 
not participate in the formation of the ring. 
To experimentally verify the research, we performed 3D models of the CDR II using the AutoCAD application.

FINDINGS OF THE RESEARCH
For the CA II-nM with n U {3, 4, 5}, except for the case with a single congruent pair of triangular faces overlapping 
in the adjacent hexahedral cells (as in the formation of the decahedral cell, Fig. 1), there is also a complete overlap 
between two pairs of triangles, the plane symmetrical ones within the same spatial hexahedral cell (Fig. 3a).
Consequently, what results from such a match is the initial spatial hexahedral cell connected by a pair of equilateral
triangles (Fig. 3b), instead of the decahedral one. In the polar arrangement, such cells produce regular double
antiprisms: the case Aa (Table 1).
Still, by using the decahedral cells, it is also possible to form a star-like deltahedral ring as a case B (see Table 1 and 
Fig. 4).

Table 1 - The number of petals / star-points in the CDR II depending on the n of CA II-nM.

n a j w kA,B = 2π/j . j = KA,B kB,A = 2π/w . j = KB,A

3 10º 40º 80º Aa 9 1 9 B 4.5 2 9

4 15º 60º 30º Aa 6 1 6 B 12 1 12

5 18º 72º 0º
Aa 5 1 5

A = B T 1 T
Bf 5 1 5

6 20º 80º 20º B 4.5 2 9 A 18 1 18

7 21.428º 85.715º 34.286º Bf 4.2 5 21 (3) Af 10.5 / 10.5

8 22.5º 90º 45º
A1 4 1 4 A2 8 1 8

Bf 4 1 4 Bf 8 1 8

9 23.333º 93.333º 53.333º Af 3.857 7 27 Bf 6.75 2 13.5

10 24º 96º 60º Bf 3.75 8 30 (3) A 6 1 6

11 24.545º 98.182º 65.454º Bf 3.667 3 11 Af 5.5 2 11
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When it comes to the CA II-nMs with bases of n ≥ 6, the rule that a convex antiprism creates the common “core” will 
no longer be valid. Here, one can see a pattern of geometric limitation similar to the one observed in the formation
of convex regular-faced pyramids or cupolae, i.e. Johnson solids J1 to J5 [05], where polygons with a number of sides 
n ≥ 6 cannot participate in the formation of such solids’ structure. However, although convex antiprisms are no longer
commonly found as a case Aa of CDR II-n, the deltahedral rings, both of A and B variants still can be formed
(Fig. 4).
Additionally, besides the results presented in Table 1, other interesting and highly symmetrical 3D forms can be
obtained. It has been noticed that trilateral symmetry appears not only in the array of the CA II-nM fragments
with n divisible by 3 (n = 3t), but also in the array of those with n = 4, n = 7, n = 10 (n = 3t + 1). For example, 
for such bases, we have discovered trefoil deltahedral rings (Fig. 4). On the other hand, for n= 3t + 2 bases, we
encounter infinite linear series of CA II-nMs, both in x, y and z direction. This is closely related to Euclidean
tilings with star-polygons [06].

Fig. 3 - Formation of double antiprism (with CA II-4M) – case Aa.

Fig. 4 - Representatives of CDR II obtained by fragments of CA II-nM, n U {3, 4, 5...11}.
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The most interesting results in this regard are obtained with CA II-8M. Here, the cases A and B are found within the 
same structure, for the same axes of symmetry and the same angle (j or w). Hence, two different solutions occur in 
both cases A and B: those with 4 and those with 8 CA II-8Ms in the ring. In this manner we obtain four different, 
concentric solutions: two flower-like and two star-like deltahedral rings.
In the case involving 8 CA II-8Ms, another (double) CA II-8M can be inserted inside the CDR II-8A, playing the 
“core” role which convex antiprisms had in the examples of CA II with n U {3, 4, 5}. Within this structure, we can 
identify 8 double square antiprisms surrounding the central double CA II-8M. The obtained composition can be
arrayed in space infinitely, creating a 3D tessellation.

CONCLUSIONS
With this abstract, we have shown that:

 – there is a link between the geometry of the CA II-nM with bases n U{3, 4, 5} and that of the convex antiprisms 
with the same bases;

 – an integer number (K) of CA II-nM’s fragments, can be used to form a full multilaterally symmetrical ring of 
concave deltahedral surfaces, either flower-like (case A) or star-like (case B);

 – the obtained rings can also be termed “of the second sort” (denoted by CDR II-n) as they inherit from the given 
CA II-nM the following: a) the linear and angular measurements needed for their graphic and mathematical 
elaboration, b) two rows of equilateral triangles in the lateral surface, and c) the high level of symmetry.

The possible formation of CDR II-n with the highest level of symmetry (i.e. excluding the cases Af and Bf), and with 
the number of petals/star-points of any integer K ≥ 2 can be a subject of further research.
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DISSECTION OF CUBES AND GOLDEN RHOMBIC SOLIDS
Izidor Hafner1 and Mateja Budin2

KEYWORDS: Golden Section, Acute Golden Rhombohedron, Obtuse Golden Rhombohedron,
Rhombic Triacontahedron, Dissection.

INTRODUCTION
Two combinations of polyhedra are equidecomposable if they have equal volumes and equal Dehn invariant. If Dehn 
invariant of a combination is 0, then the combination is equidecomposable with a cube of the same volume. Golden 
rhombic solids have Dehn invariant 0, so they are equidecomposable with cubes. A decomposition is simple if the 
number of its parts is small. There are only five convex golden polyhedra: the obtuse golden rhombohedron (O), the 
acute golden rhombohedron (A), the rhombic dodecahedron of the second kind (B, Bilinski’s dodecahedron), the 
rhombic icosahedron (I), and the rhombic triacontahedron (T) [01:156, 02:339]. Investigation of golden rhombic
solids has shown that, if a decomposition is simple, then the corresponding formula for the equality of volumes is 
simple as well. The following decompositions were known: B = 2O + 2A, I = 5O + 5A [03, 04], T = 10O +10A [05, 06]. 
Recently G. Theobald has found a 29 piece dissection of T into a cube [07].

RESEARCH
Let a be a positive number. Then (a + 1)2 = a2 + 2a + 1, so a square 
of side a + 1 can be dissected into squares of sides a and 1 and 
two rectangles 1 % a, which can be dissected into triangles and
reassembled into a rhombus. Fig. 1 shows a case when a = s, 
where s is the golden ratio, and we have a golden rhombus.

The special Fibonacci sequence 1, s, 1 + s, 1 + 2s, 2 + 3s, 3 + 5s, 5 + 8s, 8 + 13s, 13 + 21s, ... is also a geometric 
sequence 1, s, s2, s3, s4, s5, s6, s7, s8, s9,...
Let the diagonals of faces of a golden solid be d1 = 2, d2 = 2s.
Then the volume of the obtuse golden rhombohedron is O = (d1d2)/2 (d1/2) = 2s. The volume of the corresponding 
acute golden rhombohedron is A = (d1d2)/2 (d2/2) = 2s2 = 2 (1 + s). Since  B = 2O + 2A = 4s + 4s2 = 4s3, there is 
a simple dissection of a quarter of B into a cube of edge d2/2. Fig. 2 shows this 4-piece dissection [08]. But a quarter 
of B can be dissected into 1/2O and 1/2A by a 2-piece dissection. Superposing these two dissections we get a 6-piece 
dissection of 1/2O and 1/2A into a cube of edge d2/2. Fig. 3 shows this dissection, which is a geometric realization of 
the identity s + s2 =s3. Note that the known geometric realization of x3 + y3 = z3 (dissection of a cube into two cubes) 
needs at least 10 pieces [09: 239].

1 Slovenia (izidor.hafner@fe.uni-lj.si)
2 Slovenia (mateja.budin@mathema.si)
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Fig. 2

Fig. 3

The volume of 2B is 16s + 8 = (2s)3, and there is a simple dissection of 2B into a cube of the edge length d2.
(1 + s)3 = 8s + 4 + 1, and there is a dissection of a cube with edge length (d1+ d2)/2 into B and a small cube with edge 
d1/2 = 1.
(d1 + d2)

3 = 64s + 40 = 6B + 8A, and there is a dissection of a cube with edge lenght d1 + d2 into six B and eight A [02].
The volume of the rhombic triacontahedron is T = 5B = 40s + 20.
The volume of the concave rhombic triacontahedron is CT = 3B + 8 = 24s + 20.
So T + CT = 64s + 20 = (d1+d2)

3, and there is a simple dissection of combination of triacontahedra together into a cube 
[02]. The following identies are also valid (Fig. 4):
 (1 + s)3 = 8s + 5 = 2s + 2 + 3s3 = O + 1 + 1 + 3 (d2/2)3,
 (1 + s)3 = 8s + 5 = 2 (s + 1) + 3s3 = A + 3 (d2/2)3.
So there is a simple dissection of a cube of edge (d1+d2)/2 into A and three cubes of edge lenght d2/2.
 (1 + s)3 = s3 + 3s2 + 3s + 1 = s3 + 3s (s + 1) + 1 = 4s3 + 1.
So there is a simple dissection of a cube of edge 1 + s into four cubes of edge s and one with edge 1.
The left part of Fig. 4 shows a (Zometool) dissection of a cube into an A and six eighths of B. The right part shows a 
dissection of a cube into an O, six eighths of B and two small cubes.
Numbers 1, s, 1 + s are algebraic integers in Q (√5), which is an extension of the field of rational numbers by adjoining 
√5. Norm of s is (1 + s) (1 - s)/4 = -1. So s is a unit in this field.
The equation z3 = 4y3 + x3 has no solution in integers (if z, y and x are different from 0). But it has such solution in 
integers in Q (√5).
We know that a combination of polyhedra with Dehn invariant 0 is equidecomposable with a cube of equal volume. 
But is there a simple dissection of the combination into the cube?
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Fig. 4

CONCLUSIONS
If there is a simple dissection of two combinations of polyhedra, there is a simple formula for equality of their volumes. 
The opposite statement is doubtful. What about 4D? How does a dissection for formula (s + 1)4 + 8 = (s - 1)4 + 8s4 
look like?
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EQUIFACED SIMPLICES AND POLYTOPES
Günter Weiss1

KEYWORDS: Simplex, Polytope, Cross-Polytope, Equifaced Polyhedron, Duality, Mongepoint, Miura-Ori.

INTRODUCTION
The concepts “simplex” resp. “polytope” generalize the concepts “triangle” and “tetrahedron” resp. “polygon” and 
“polyhedron” to higher dimensions. While for triangles, advanced elementary geometry provides a huge amount of 
research results (e.g. [01]), the research viewpoints for simplices and polytopes focus on the objects themselves, their
classification and visualisation [02], and only a few references deal with what could be called “remarkable points and 
lines” of those objects in an n-dimensional (Euclidean-) space. Most references concerning “Solid Geometry” deal 
with objects in a three-dimensional Euclidean space, as in, for example, [03], [04] and [05].
In the following, we deal with some properties of low-dimensional cases of simplices and polytopes, which are
generalisations of equilateral triangles and rhombuses resp. tetrahedrons and octahedrons. Some of these properties 
are already well-known. When they are presented here, too, it is, because we use synthetic proofs, often based on
classical descriptive geometry, instead of analytical ones.

RESEARCH
Properties of polyhedrons or polytopes are either of projective geometric or of affine nature or their proper place 
of action is a metric space. An example for a rather projective geometric property is a pair of two perspective
k-simplices, which reveal additional “remarkable points”, c.f. [06]. Such perspective simplices can be interpreted
as perspective projections of cross-polytopes in a higher-dimensional projective space. Thereby, the coordinate
field can be chosen arbitrarily with the only restriction that its characteristic is unequal to 2 [06]. Examples of affine 
geometric properties are e.g. affine regularity and the centroid of a convex polytope (understood as a set of vertices 
or as a solid), while the centroids of lower dimensional “skins” of a polytope, e.g. its edges or 2-faces, are metric
properties. 
The concept “equifaced” is a matter of the considered metric. It might mean the equal content of d-faces of an
n-polytope as well as congruent d-faced polytopes, (1 ≤ d < n), whereby the congruence can be considered with
respect to the Euclidean or to non-Euclidean geometries. Even the (Euclidean) similarity group might be allowed 
to generate polyhedrons, which are “equifaced” in the sense of having similar faces. There are examples of even 
closed and convex polyhedrons with similar triangles as faces, but it remains an open question, whether there exist
polyhedrons with similar quadrangular faces or not.
Obviously, Euclidean regular polytopes (see e.g. [07]) are equifaced. Equifaced tetrahedrons are already mentioned in 
[08]. Starting with a (non-isosceles) triangle one can ask e.g., how many octahedrons can be built with copies of that 
triangle. One also might connect them with the space-filling set of problems.
Another (Euclidean or non-Euclidean) metric property of a polytope worthy to be mentioned are their different 
sets of altitudes: e.g. the set of “vertex altitudes” of a tetrahedron consists, in general, of four generators of a special
regulus [09], while the set of “edge altidudes” of a tetrahedron consists of three concurrent segments [10]. It 
is also possible to generalize the concept “M-altitude” (midpoint altitude [08] for complete plane quadrangles to
some special polyhedrons and polytopes. Here the concept “midpoint of a d-face” splits up to e.g. the centroid, the
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circumcentre or the incentre, if they exist, or even the Monge point. While for a quadrangle inscribed to a circle, the 
six M-altitudes are concurrent, they form again a complete quadrangle for a generic quadrangle. The circumcentres
of the partial triangles of the original quadrangle form a quadrangle, which is in perspective position with the
M-altitude quadrangle, thus defining a “quadrangle centre”. Therewith, the question arises, if there exist analogues in 
higher dimensions, too, and what happens, if one considers iterations of the constructions.
With a general triangle, one connects the well-known Euler-line as a basic “remarkable object”. For generic
n-simplices, too, an Euler-line is defined containing the centroid, the centre of the circum-sphere, and the Monge 
point of the n-simplex [03] for the 3D-case. It suggests itself to consider the sets of Euler-lines of the (n − d)-faces of 
an n-simplex or of an n-polytope with (n − 1)-simplices as hyperfaces.
The concept “polytope” is neither restricted to the property of being closed nor of being convex. For example, one 
can generate equifaced polyhedrons starting with an arbitrary equilateral (planar) quadrangle receiving finite or
infinite structures, which have, and already had, some applicability for architecture and civil engineering. Here,
“foldable structures”, i.e. extensions of the concept origami and especially of the miura-ori should be mentioned, 
as well as movable structures as those of the octahedrons of Bricard [11], [12] and [13] and the polyhedrons of
Kokotsakis type [14].
Starting with a closed convex equifaced polyhedron, one can construct further polyhedrons, by intersecting the outer 
symmetry planes of adjacent face polygons. For example, in the case of a cube as start polyhedron, the first resulting 
polyhedron is the rhombic dodecahedron, which obviously has congruent faces. But this is not the only equifaced 
closed dodecahedron: the Bilinski dodecahedron is another one [15]. The construction of using the outer symmetry 
planes of two adjacent faces might be called “edge duality” as an analogue to the usual “duality”, which we, in this
connection, had to call “vertex duality”, as it makes use of the symmetry planes of three adjacent faces. Obviously, this 
way of defining dualities can be extended to higher dimensions and, of course, also be iterated.

CONCLUSIONS
The aim is to show that there still is a wide range of open questions and viewpoints, in spite the many results presented 
e.g. in actual Wikipedia entries. Even so, the mentioned and partly new considerations are more or less restricted to 
equifaced polyhedrons and polytopes, so, this lecture will present not more than a review over the different topics.
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TOPOLOGICAL INTERLOCKING OF PLATONIC BODIES:
GEOMETRY ENABLING THE DESIGN OF NEW MATERIALS AND STRUCTURES
A.J. Kanel-Belov1, A.V. Dyskin2, E. Pasternak3 and Y. Estrin4

KEYWORDS: Topological Interlocking, Convex Polyhedra, Platonic Bodies, Materials Design,
Engineering Structures.

INTRODUCTION 
In this research, we look at an interesting application of convex polyhedra, specifically platonic bodies, in engineering 
of materials and structures with superior mechanical properties. The principle we used is referred to as topological
interlocking [01-03]. The basic underlying idea is that it is beneficial to replace massive solids with an assembly of 
identical blocks whose geometrical shape and mutual arrangement provide interlocking of the blocks within the 
structure, so that no connectors or binder are required to hold them in place.

RESEARCH 
Mathematically, this principle can be illustrated in the following way. Consider a set of convex figures in R2. It can be 
proven that one of these figures can be moved out of the set by translation without disturbing the others. Therefore, 
any set of planar figures can be disassembled by moving all figures one by one. However, attempts to generalize this 
statement to R3 have been unsuccessful and finally, quite unexpectedly, interlocking structures of convex bodies were 
found. These structures are important in engineering, as they provide a means to hold elements together without
gluing. As a result, segmented solids can be constructed with enhanced damping, as separate elements can move
relative to each other. In addition, a crack nucleated in an element will be arrested at its boundary. We have proved 
that such structures can be assembled with any type of platonic polyhedra (as well as their truncations), and they have 
a geometric beauty. It is interesting to mention that this principle was considered in a medieval work by Abeille [04], 
who suggested to construct vaults made from interlocked truncated tetrahedra. 
In our publication [01], we demonstrated that identical tesserae in the shape of any of the five platonic bodies can 
be arranged in a monolayer, in which they are interlocked by virtue of their shape and mutual arrangement. These
assemblies are sketched in Fig. 1. A recipe for generating such structures of topologically interlocked blocks by
transformation of a tiling of their middle cross-sectional plane in the normal direction has been provided in [02]. 
In the years that followed the inception of this geometrical principle, we have demonstrated its numerous benefits for 
design of new materials and structures. These include the ease of assembly and disassembly (hence, full recyclability 
of the blocks), the possibility of combining dissimilar materials within a structure, which allows for a range of new
functionalities, and responsiveness of the assemblies to external stimuli enabled by changes of the applied lateral 
forces in response to a stimulus [03]. 
Since the inception of the concept of topological interlocking of polyhedra, several research groups adopted it and a 
significant body of research emerged. In the realm of architectural design, the work by Fallacara [04], Tessmann and 
Becker [05], Weizmann [06], Miodragovic Vella and Kotnik [07], Brocato and Mondardini [08], Piekarski  [09], Viana
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Fig. 1 - Interlocking arrangements of platonic bodies: a) tetrahedra;  b) cubes; c) octahedra; d) and e) dodecahedra; f) icosahedra (after [01]).

a)

d)

b) c)

f)e)

[10], and others should be mentioned. In the context of materials design, research of the Siegmund lab at Purdue 
University and the Barthelat lab at McGill University has been particularly productive, as it provided insights in the 
manufacturing aspects of topological interlocking materials and outlined some important developments. 
      
CONCLUSIONS 
In this abstract, we give an overview of the geometrical principles underlying topological interlocking and its
possible engineering applications, provide a critical assessment of the existing literature, and present some of our
recent research into the engineering applications of this fascinating design principle.
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AN EULER-CAYLEY FORMULA
FOR GENERAL KEPLER-POINSOT POLYHEDRA
Dirk Huylebrouck 1

KEYWORDS: Euler Formula, Cayley formula, Kepler-Poinsot Polyhedra, Infinite Polyhedra.

INTRODUCTION
The generalized formula of Euler-Descartes for a polyhedron with V vertices, F faces and E edges that is the atom
for a polyhedral structure with h loops is (see [01], [02], [03], [04])
 V + F – E = 2 (1 – h).
On the other hand, Cayley’s formula for Kepler-Poinsot polyhedra with V vertices of densities b and F faces of
density a, E edges and polyhedron density c is (see [05]):
 bV + aF – E = 2c.
It was generalized to Archimedean polyhedra with Vj vertices and Fi faces of a given type and densities bj and ai
respectively, E edges and polyhedron density c:
 SbjVj + SaiFi – E = 2c.
Here it is shown that both generalizations can be united in a single formula:
 SbjVj + SaiFi – E = 2 (c – a1h)
where Vj are the vertices, and Fi the faces of a given type and densities bj and ai respectively, E the edges and c the
polyhedral density of the atom repeated in the structure with h loops connected on faces with face density a1.
We illustrate the formula with several examples of generalized Kepler-Poinsot polyhedra.

RESEARCH
INTRODUCTION: THE WELL-KNOWN FORMULAS
The formula of Descartes-Euler states that for a convex polyhedron with V vertices, F faces and E edges:
 V + F – E = 2.
Cayley generalized it to the Kepler-Poinsot polyhedra, using the face density a, the vertex figure density b, and the 
polyhedron density c:
 bV + aF – E = 2c.
The face density a of a star polygon is 2 if one vertex is omitted to reach the next vertex of the subscribed polygon 
in a given star polygon (as in a star pentagon), 3 if two vertices are omitted (thus, for a star heptagon or octagon, 
a can be 2 or 3), and so on. It can also be seen as the number of times the star polygon goes around the center. 
Therefore, some call it the ‘winding number’, that is, the number of times a string surrounds a finger placed at the 
center. Yet another interpretation is that the central part of such a star polygon covers the surface as many times as
given by a.
Similarly, the vertex figure density b tells us how many times a vertex should be counted when forming a polyhedron. 
It is the ‘winding number of the vertex figure’, the polygon that results when the vertex is slightly truncated. The
polyhedron density c indicates by how many layers the polyhedron would cover a sphere if the polyhedron were 
blown up to a sphere. For regular convex polyhedra, all density values equal 1, and thus Cayley’s formula is
a generalization of Euler’s formula.
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Cayley’s generalization also works for star polyhedra ‘of Archimedean type’, that is, for star polyhedra with more
than one type of regular polygons as faces. Suppose it has Vj vertices and Fi faces of a given type, with densities
bj and ai respectively, then Cayley’s formula generalizes to:
 SbjVj + SaiFi – E = 2c.

Example 1:
Consider the truncated great icosahedron, formed by 12 pentagrams and 20 hexagons: 60 + (2 · 12 + 20) – 90 = 2 · 7.

Example 2:
Kepler's star can be seen as a compound polyhedron formed by two joint tetrahedra: 8 + 8 – 12 = 2 · 2.

Example 3:
Consider an open pentagonal anti-prism (an anti-prism with triangular faces with pentagrams on the bottom and 
the top) on which stand star pyramids on the top and on the bottom: (2 · 2 + 10) + 20 – 30 = 2 · 2.

There is another generalization of the Descartes-Euler formula. Let h be the numbers of loops in a polyhedral
structure. For an infinite polyhedron, this is defined by the number of loops in the repeating part. Others prefer to 
use the word genus in this context, but in the context of Kepler-Poinsot solids, with their many holes and cavities,
this can be confusing (see [03], [05], [06]). Now the formula becomes:
 V + F – E = 2 (1 – h).

Example 4:
Consider a toroid of 8 open octahedra: 8 · 3 + 8 · 6 – 8 · 9 = 2 · (1 – 1) = 0 (Fig. 1).

Example 5:
Consider Petrie-Coxeter’s infinite polyhedron {6, 4} where four hexagons meet at a vertex and V + F – E = –4, since 
V = 12, F = 8, E = 24 and h = 3. Each ‘atom’ is formed by a truncated octahedron of which 3 times 4 vertices, 6 faces 
and 3 times 4 edges are removed. The removed parts fit on those of the atoms next to it (Fig. 1).

JOINING EULER’S GENERAL FORMULA AND CAYLEY’S FORMULA
The above formulas of Euler and Cayley can be united in a single formula. Suppose an Archimedean polyhedra with 
V vertices, F faces and densities b and a respectively, E edges and polyhedron density c is used to form an atom of a 
larger polyhedron. In that case, Cayley’s formula says:
 bV + aF – E = 2c.
It can be rewritten as:
 b (V – n) + (b – 1) n + n + a (F – 2) + 2a – (E – n) – n = 2c,
or else:
 b (V – n) + (b – 1) n + a (F – 2) – (E – n) = 2c – 2a.
When we connect those polyhedra in a series or loop, they are joined on a common face.
Thus, we should delete two faces, one to connect it to the ‘previous’ one, and one to connect it to the ‘next’ one. From 
one of them, we had to remove n vertices, but counted only once (that is, with density 1). The thus formed atom has 
V – n vertices with density b and n vertices with densities b – 1. It has F – 2 faces with densities a and E – n edges.
Thus, the first expression, b (V – n) + (b – 1) n, is the number of vertices times their density of the newly formed 
polyhedron, while the second, F – 2, is its number of faces times its density, and the third, E – n, its number of edges.
Or, using appropriate notations:
 SbjV’j + aF” – E’ = 2 (c – a · 1).
Repeating this procedure 2h times yields:
 SbjV’j + aF” – E’ = 2 (c – a · h).
It is straightforward to generalize this to the Archimedean case to get SbjVj + SaiFi – E = 2 (c – a1h) and it probably
is possible to generalize this expression even further, so that not only the density a1 is singled out, but other face
densities too, in a general notation. In in view of the examples at the disposal, however, this seems unnecessary.
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In the case a1 = 1 and c = 1, SbjVj + SaiFi – E = 2 (1 – h) and that is the general Euler-Descartes formula.
In the case h = 0, SbjVj + SaiFi – E = 2c, and that is the general Cayley formula.

EXAMPLES OF THE GENERALIZED EULER-CAYLEY FORMULA
Coxeter excluded shapes with adjacent faces in a common plane to be considered as polyhedra (see [02]). However,
this rule hasn’t been followed by all authors, such as J. R. Gott, who called some of the solids he discovered
‘pseudo-polyhedra’ (see [04]). Others did not make that distinction and simply called them ‘polyhedra’. We will
follow this approach, though it seems quite a topic of discussion and so we refer to several references, such as [01], 
[04] or [05].

Example 6:
Consider the closed toroid star polyhedron where 6 equilateral triangles meet in each vertex. All triangles are
equilateral but some cut each other causing an apparent trapezoid intersection. Three triangles lay in one plane 
along an edge of a pentagram. Now V = 20, F1 = 0 (the pentagonal star in the middle) and F2 = 40, E = 60, b1 = 1,
a1 = 2, b2 = 1, a2 = 1, c = 2 and h = 1 : 20 + 40 – 60 = 2 · (2 – 2 · 1).

Example 7:
Consider rings of small ditrigonal icosidodecahedra. For one small ditrigonal icosidodecahedra, V = 20, F1 = 12 
and F2 = 20, E = 60, b1 = 1, a1 = 2, b2 = 1, a2 = 1, and c = 2. To form one ring of 10 elements and thus an example
with 1 loop, 2 pentagonal faces are removed to form the atoms, including, for one of the faces, the vertices
and the edges, so that V = 15, F1 = 10 and F2 = 20, E = 55. There are 10 atoms in total:

 10 · 15 + (10 · 2 · 10 + 10 · 20) – 10 · 55 = 0 = 2 · (2 – 2 · 1).
The small ditrigonal icosidodecahedra can be placed in 2 rings, thus forming an example with 2 loops, but
where 2 rings meet, 3 pentagonal faces now have to be removed from two of the atoms. There are 17 atoms:

 17 · 15 + (15 · 2 · 10 + 2 · 2 · 9 + 17 · 20) – 17 · 55 = -4 = 2 · (2 – 2 · 2).
They can be placed in 3 rings (or more), by removing 3 pentagonal faces from four of the atoms. There are 22 atoms:

 22 · 15 + (18 · 2 · 10 + 4 · 2 · 9 + 22 · 20) – 22 · 55 = -8 = 2 · (2 – 2 · 3).
Example 8:

We again consider open octagrammic star prisms, but connect them by open great rhombihexahedra. For a regular 
closed great rhombihexahedron, V = 24, F1 = 6 and F2 = 12, E = 48, while for an octagrammic prism V’ = 16, F’1 = 2
and F’2 = 8, E’ = 24. We remove all octagrammic stars, so that 3 open octagrammic star prisms and one open great  
rhombihexahedra together have 24 vertices, 36 = 12 + 8 · 3 faces and 72 edges: 24 + 36 – 72 = – 12 = 2 · (3 – 3 · 3). 
Six squares meet at each vertex (Fig. 1).

Fig. 1 - A toroid of open octahedra and Petrie-Coxeter’s infinite polyhedron (left)
and a polyhedron made from great rhombihexahedra and octagrammic prisms (middle, right).
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Example 9:
Consider a small cubicuboctahedron: V = 24, F = 20, E = 48. Now, 2 · 24 + 20 – 48 = 2 · 10 and c = 10. We
remove the 6 squares and their 24 vertices and edges to open the small cubicuboctahedron. Next, we remove 12 
vertices and 12 edges to connect it to  other adjacent small cubicuboctahedra: 12 + 14 – 12 = 12 = 2 · (10 – 1 · 3).
Four octagons and two triangles meet at each vertex. Adding open cube tunnels between them turns it into
an Archimedean example. An open cube has V = 4, F = 4 and E = 8 so that adding V + F –E doesn’t alter the
Euler-Cayley-formula (Fig. 2).

Fig. 2 - An infinite Kepler-Poinsot-polyhedron made from small cubicuboctahedra and an Archimedean case.

Example 10:
Consider a tetrahemihexahedron: V = 6, F = 7, E = 12. Now, 2 · 6 + 7 – 12 = 2 · 7/2 and c = 7/2. We remove
the 4 triangles to open the tetrahemihexahedron. From 2 of them, we remove their 6 vertices and edges:
1 · 6 + 3 – 6 = 3 = 2 · (7/2 – 1 · 2). We add open anti-prisms tunnels between to get an Archimedean example,
but that does change much as open anti-prisms tunnel has V = 3, F = 6 and E = 9 so that adding V + F – E
doesn’t alter the Euler-Cayley-formula (Fig. 3).

Fig. 3 - An infinite Kepler-Poinsot-polyhedron with tetrahemihexahedra and triangular anti-prisms.

Example 11:
Consider the well-known example of a ring of icosahedra connected by open triangular anti-prisms, but
replace the icosahedra by great icosahedra. For a great icosahedron, V = 12, F = 20 and E = 30, so that
2 · 12 + 20 – 30 = 2 · 7. We remove one triangle with its vertices and edges, plus one triangle (only the face):
2 · 9 + 3 + 18 – 27 = 2 · 7 – 2 = 2 · (7 - 1 · 1) and get one loop. Removing another triangle with its vertices and
edges, plus one triangle (only the face): 2 · 9 + 16 – 24 = 2 · 7 – 4 = 2 · (7 - 1 · 2) and there are now two loops (Fig. 4).
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Fig. 4 - An infinite Kepler-Poinsot-polyhedron with great icosahedra and open triangular anti-prisms.

Example 12:
Consider a cubohemioctahedron: V = 12, F = 10 and E = 24 so that 2 · 12 + 10 – 24 = 2 · 5 and c = 5. Without 
the squares faces and common vertices and edges: V = 6, F = 4 and E = 12 so that 12 + 4 – 12 = 4 = 2 · (5 – 1 · 3).
Adding open cube tunnels (V = 4, F = 4 and E = 8; thus, 4 + 4 – 8 =0) to get an Archimedean derivative clearly 
confirms the number of loops is 3 (Fig. 5).


Replacing the
icosahedra by

great icosahedra



Fig. 5 - A regular polyhedron made from cubohemioctahedra and an Archimedean derivative.
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The infinite open cubohemioctahedron polyhedron is a new regular polyhedron (see [07]). In Schäfli notations,
it is a regular {6, 8}. Two layers can be obtained from four layers of the regular Petrie-Coxeter {6, 4} and so, at first 
sight, it looks like a compound polyhedron just as Kepler's star is made from two tetrahedra. However, whereas
Kepler's star still is a {3, 3}, just as its components, the infinite open cubohemioctahedron polyhedron is a {6, 8} while 
its components are {6, 4}.
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POLYHEDRAL TRANSFORMATION
BASED ON NEW ROTATIONAL QUADRATIC SURFACE PROPERTIES
Andrés Martín-Pastor1

KEYWORDS: Quadratic Theorems, Graphic Thinking, Panelling, Discretization, Polyhedral Transformation.

INTRODUCTION
We want to evince the presence of polyhedra in the history of Descriptive Geometry as pieces that, beyond being 
merely symbolic, enable the most complex spatial transformations to be graphically understood. Following this
inherited tradition, we have also relied on polyhedra to explore the properties of a transformation arising from the 
graphical conjecture presented in [01], in which a property of the rotational paraboloid, expounded by Archimedes 
(287–212 B.C.) in his work On Conoids and Spheroids [02], is generalized to include all rotational quadratic surfaces. 
The conjecture is summarized as follows:

“If two rotational quadratic surfaces share the position of one of their foci at the same point, then the intersection
curves between the two surfaces are always planar” (The oblate ellipsoid and one-sheeted hyperboloid are
excluded) (Fig. 1).

Fig. 1 - Graphic conjecture: Planar intersection of ellipsoids with paraboloids and hyperboloids.

Although the property is open to many other applications, in this abstract, we explore the capacity offered by this 
graphic conjecture to project a net of flat polygons, placed on a sphere, onto a rotational quadratic surface, while 
maintaining planarity after the transformation.
The problem of discretizing surfaces on planar surfaces constitutes a topic frequently tackled in the scientific
literature, with numerous contributions in applied mathematics and in architectural geometry. The contribution 
of this abstract resides in the presentation of a straightforward reasoning that aids in the comprehension, from a
graphical approach, of certain spatial properties that can be deduced regarding rotational quadratic surfaces, which, 
to date, have somehow been left relatively untouched by specialists. Based on these graphic speculations, and 
with the support of polyhedra, we present a new way to characterize 3D homology, by means of a sphere and an
ellipsoid, and an innovative form to bevel the edges of a polyhedron by means of conical curves.

1 Universidad de Sevilla, Spain (archiamp@us.es)
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CONTEXTUALIZATION
By way of contextualization of this work, we want to show how polyhedra remain the most important pieces
for an understanding spatial transformations in various graphic systems.
The relationship of polyhedra with perspective (the first codified system of representation) provides extraordinary
examples in history: Daniele Barbaro, Vignola-Danti, Sirigati, Niceron, Dubreil, Albrecht Dürer and Wenzel
Jamnitzer, among many other geometers. The formulae initiated by Luca Paccioli and Barbaro triggered an analysis 
of the internal geometry of the polyhedron, which substantially conditions the form of representation. The polyhedra 
must therefore be known a priori in order to be represented on the basis of their internal relations. The proposed
strategy always links the polyhedron with the space to be represented and can be summarized as such: since the
internal structure of the polyhedron is known, we can ascertain how space is transformed [03].
There are two examples of great interest, little known to specialists, that single out the use of polyhedra in the personal 
search for geometric relationships: The interpretation of the polyhedra of  Wenzel Jamnitzer (1568) by the anonymous
Spanish author of the manuscript Artes Exçelençias dela Perspectiba [04], dating from 1688 (Fig. 2, left); and the
reasoning employed by certain geometers regarding the fourth dimension in the late nineteenth century (Fig. 2, centre 
and right).
The Spanish author carried out an analysis of the complex illustrations of Jamnitzer’s perspective treatise, which
lacked auxiliary lines and tracings. In the manuscript, the polyhedra were finally represented from another point 
of view and with all types of graphic and literary explanations. We are faced with a very interesting case, where
a rigorous analysis of the polyhedra enables not only its true size to be deduced, but also the parameters that define
the System of Representation [05].
The first geometers who strove to accurately graph the fourth dimension were faced with enormous problems: on one 
hand, they had to represent the invisible, while, on the other hand, they had to define a new form of representation. 
In these first attempts, the tetra-dimensional polyhedra, or polytopes, played a decisive role which still is in existence 
today [09].
We highlight the work of Van Oss [07], which included the first coding of a coherent graphic method to represent the 
tetra-dimensional space. This effort by Van Oss to plot the 4D space cannot be understood without the knowledge 
of polytopes, whose geometry was being deduced mathematically at that time. A few years later, this graphic method
appeared in the work of Schoute [10] and Jouffret [08]. Since then, numerous attempts have been made to represent 
tetra-dimensional objects, always with the presence of polytopes.
Llorens-Herrero, in his Doctoral Thesis [11], finally managed to systematise the tetra-dimensional Euclidean space by 
means of a complete Graphic System.

Fig. 2, left - The figure [04: Chapter 10, Fol. 72.] is an interpretation of Perspetiva Corporum Regularium, [06, table O, F, III,].
Fig. 2, centre: Representation of 16Cell, in the first 4D graphic system: 4-ortogonal axis projection system, [08: Tafel I].

Fig. 2,  right: Representation of 8Cell in the 4-ortogonal axis projection system [07: 119].
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His method consists of extrapolating the reasoning of Monge’s Dihedral system to an extra dimension: if a 3D
object can be defined in an unequivocal way by means of its planar projections, then, a 4D object can also be defined
by tri-dimensional projections. In his thesis, Llorens shows that all the lines of reasoning in Monge's Descriptive
Geometry are equally valid for tetra-dimensional abstract elements. 
This brief introductory reflection serves as a presentation of a study, which, as in the aforementioned examples,
features polyhedra as the leading players in the role of geometric knowledge.

RESEARCH
AREA OF APPLICATION AND METHODOLOGY
The discretization of quadratic surfaces, especially ellipsoids, constitutes a wellknown topic in the field of surface
discretization. Numerous methods of panelling are available for quadratic surfaces. We should bear in mind the 
Monge’s ellipsoid, commented by Hachette [12], regarding the lines of principal curvature and its relation on current 
panelling methods. Pottmann are also studying this topic together with other more advanced topics [13]. There are 
many theses and research papers in the literature on surface panelling, where various panelling methods are proposed 
that are indirectly related to the present study [14, 15].
Our study is focused on the properties of rotational quadratic surfaces, in particular on a type of transformation,
which projects planar polygons placed on a sphere, onto ellipsoids, paraboloids, and hyperboloids, while
maintaining planarity after the transformation. The methodology employed for its demonstration is not based
on any formal mathematical language, but on graphic thinking. Its validity has been fully tested through a heuristic 
method which involves checking the planarity on all possible combinations of quadric intersections in a necessary
and sufficient number of cases in [01]. For this purpose, the power of CAD tools has been used as a true geometric 
research laboratory, where the validity of the theoretical approaches is subject to trial and error.

CASE 1: PROJECTING BY CONES
According to a specific case of the conjecture described above, a cone of revolution whose vertex is located in the focus
of a rotational quadratic surface cuts this surface in accordance with a planar curve (Fig. 3a). Therefore, a family
of revolution cones, whose vertex is located in the centre of a regular or semi-regular polyhedron, can project the 
points of the original polyhedron onto other rotational quadratic surfaces such as ellipsoids (Fig. 3b), paraboloids,
and hyperboloids (Fig. 3c). The transformation maintains the flatness of the faces of the final projected polyhedron, 
which is inscribed in the second quadratic surface. In general, this property is fulfilled for irregular polyhedra whose 
points are all situated on the surface of a sphere, on the condition that the vertex of the projected cone is located in the 
centre of the sphere and in the focus of the rotational quadratic surface (Fig. 3d).

CASE 2. PROJECTING BY ELLIPSOIDS, PARABOLOIDS OR HYPERBOLOIDS
Instead of using conical projecting rays, we can also use ellipsoids, paraboloids or hyperboloids as projecting surfaces. 
These quadratics surfaces must share the position of one of their foci with the ellipsoid of reference and pass through 
the vertices of the polyhedron (Fig. 4, left). The points contained in the flat section of a sphere, face of polyhedron, 
transform into points contained in the flat section of another rotational quadric surface, just like case 1, but reducing
the size of the transformed polygon (Fig.4, upper right). We verify that this transformation coincides with the
operation of case 1, by projecting cones, applied to the same polyhedron with its edges bevelled. As a result, we have 
an operation that automatically bevels the edges of a polyhedron, inscribed in a sphere, according to different criteria 
(Fig. 4, bottom).
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Fig. 3a - Projecting by cones from one focus.
Example of ellipsoid, paraboloid, and hyperboloid.

Fig. 3b - Polyhedral transformation Case 1: Projecting by cones from one focus.
Example of discretization of ellipsoid based in the truncated icosahedron.

Fig. 3c - Polyhedral transformation Case 1: Projecting by cones from one focus.
Example of discretization of paraboloids and hyperboloids based in the truncated icosahedron.

Fig. 3d - Polyhedral transformation of irregular polyhedra.
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GRAPHICAL CHARACTERIZATION OF 3D HOMOLOGY
The graphic study carried out in case 1, projecting cones, reveals that this transformation can be generalized for all 
points of space beyond the surface itself. If we can perform the transformation of a polyhedron whose vertices are 
contained in a sphere, we can also carry out the transformation of a polyhedron with vertices contained in various 
spheres. This is the case of the rhombic dodecahedron whose vertices are inscribed on two concentric spheres. (Fig. 5a)
The imposition of flatness in the faces of the transformed polyhedra determines the major and minor axes of the 
second ellipsoid that shares the focus position with the first (Fig. 5b). It is deduced that the second ellipsoid is unique 
and it can be determined via the first sphere-ellipsoid set, which we call the “reference”. Once this transformation 
is defined, the problem is generalized for any concentric sphere. Space continuum could therefore be understood 
as consisting of a set of spheres that are concentric to the reference sphere, where each one is transformed into a
different rotational quadric surface (Fig. 5c). The transitions from ellipsoid to paraboloid and hyperboloid therefore 
carry a special importance, since these determine the singular points of such a transformation.

RESULTS
As a result of these graphical speculations, we deduce that the transformation carried out by this conjecture (case 1) is 
strictly a 3D homology (Fig. 5d). While this is a basic transformation of space studied in mathematics, it has not been 
as popular in the known courses in Descriptive Geometry. A rare example is described in Taibo [16: 273]. Through our 
graphic study, we present an innovative way to completely characterize this transformation. The graphical elements 
that define this homology (homology centre, homology plane, plane limit 1, and plane limit 2) remain implicit on 
defining the form and position of the reference sphere and the reference ellipsoid.

Fig. 4 - Polyhedral transformation Case 2: Projecting by ellipsoids, paraboloids or hyperboloids from one shared focus.
Example of discretization based in truncated icosahedron. The point are projected by hyperboloids.

The result is a truncated icosahedron with edges bevelled.
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Fig. 5a and 5b - Transformation of the rhombic dodecahedron from two spheres (red and blue) to  two ellipsoids.

Fig. 5c - Generalization for entire space: each point of space corresponds to one sphere
and each sphere is transformed into a different rotational quadratic surface.

Fig. 5d - The transformated rhombic dodecahedron reveals that this transformation is strictly a 3D homology.

CONCLUSIONS
With respect to the applications of the conjecture to produce polyhedric transformations, we have differentiated
between two types of transformation: the first by cones, and the second by ellipsoids, paraboloids, and hyperboloids.
We have verified the correlation of the first transformation with a 3D homology. This leads to a new way to
characterize 3D homology: by means of a sphere and an ellipsoid. 
Newly discovered features of the second transformation include the fact that, instead of projecting by means of
projecting rays, the projection occurs by means of conical curves with one of its foci located in the centre of the sphere. 
As a result, we have a new transformation that automatically generates bevelled polyhedral edges from other simpler 
polyhedra.
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Both procedures can be parametrized in Grasshopper, thereby providing a way of discretization for rotational
quadratic surfaces. It should be emphasised that it is not only the new technologies and parametric tools that have 
made the definition of this transformation possible, but the capacity that new technologies offer in the production of 
augmented graphic thinking, which enables us to reinterpret inherited tradition.
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THE CONSTRUCTION OF REGULAR AND SEMIREGULAR POLYHEDRA
THROUGH THE SYNTHETIC METHOD 
Leonardo Baglioni1 and Federico Fallavollita2

KEYWORDS: Descriptive Geometry, Mathematical Representation, Chiral Polyhedra, Snub Cube.

INTRODUCTION 
In this study, we propose an explanation and application of the synthetic method to the representation of platonic 
and archimedean solids (PS and AS). The intention is to illustrate the potential of this method in a historical and
theoretical context. The study of regular and semiregular polyhedra, in this sense, is an ideal theme to illustrate 
the heuristic potential of drawing. Therefore, some synthetic constructions of PS and AS are proposed, defining
the constructive algorithms of these figures. The working environment used is the mathematical representation meth-
od; for some constructions, parametric and physical simulating tools were used. Particular attention is dedicated to 
two different synthetic methods; the first, is the construction of the snub cube through paper folding [01: 1-14] and 
the second, is a more general method that exploits a physical simulator engine.

RESEARCH 
The synthetic method, as Gino Loria explains in the booklet I metodi matematici [02: 77-83], is part of the math-
ematical methods. In particular, we refer to what Loria defines as the method of existential construction. He inserts
this method among those special to geometry. He explains that "Euclid […] never reasons on a figure whose
construction he has not previously taught”. As an example, he proposes the proof of the existence of the PS through 
the known Euler formula

F + V - E = 2
Then he says n is the number of sides of each face and m is the edges, and he declares this:

nF = 2E, mV = 2E
He deduces and concludes that the only possible regular solids are the five PS. "To prove their existence, not only
arithmetic but also geometric, it is useful to start from their actual construction" [02: 77] 
In these constructions, Loria explains how to build the five PS in space by giving instructions that are nothing more 
than algorithms that step by step allow us to build the solids. This existential method for Loria has a mathematical
dignity equal to all the other methods illustrated in the essay. In particular, at the beginning of the essay, Loria
distinguishes the analytical method from the synthetic one, trying to give a definition to both.

"Following the first (Analysis) we reduce the theorem to be demonstrated or the problem to be solved
to another that is judged to be simpler, to the new one we apply the same procedure and so we continue
until we get to a known or already treated proposition. Following the second one (Synthesis) a series of
considerations is established which gradually leads to the desired purpose ". [02: 03]

The synthetic method, therefore, is typical of descriptive geometry, that uses drawing as a research tool for the
properties and relationships of figures in space.
Today, the synthetic method, thanks to the advent of the digital revolution, has acquired particular importance in 
the world of geometry. The digital drawing has a higher accuracy than the analogical one and, above all, allows us to

1 Sapienza University of Rome, Italy (leonardo.baglioni@uniroma1.it)
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draw directly in space. Nevertheless, there is a character of representation that more than any other has been enhanced 
by digital, and that is its constructive aspect. Geometry deals in abstract terms with procedures and methods that can 
be replicated in reality by means of physical instruments. Construction as a mental process at the base of geometric 
operations in the plane and in space, finds a fertile field of application in the virtual world, greatly enhancing the
heuristic power of representation. This makes it possible to review old and new geometry problems that previously 
were impossible to solve synthetically [03: 7-28].
Taking inspiration from Loria's considerations, we propose the construction of some PS and AS through the
synthetic method and attempting, in this way, to show the heuristic potential of drawing. In particular, we focus on 
the construction of the snub cube and we propose constructions that can be implemented in a parametric modeller 
(Grasshopper) and a physical engine (Kangaroo). For example, we can construct the dodecahedron starting from the 
basic pentagon face and from two adjacent faces, replicating the same operations that we could conduct in reality.
In this way, by simulating 
the geometric movement of
rotations in space of the two
adjacent faces, it is possible to 
find the meeting point of the 
edges and stop the rotation
at the exact point (Fig. 1). 
Furthermore, in the proposed 
algorithm, we have identified
a solid section composed by a 
rectangular shape strip, form-
ing a vacuous solid similar to 
the treaty by Luca Pacioli.
Synthetic constructions have 
also been studied and pro-
posed for the AS that, as 
known, can be obtained from 
PS. These solids are convex
polyhedra, composed of faces 
of regular polygons of differ-
ent types but with edges of 
equal length; for this reason, 
they are called semiregular 
polyhedra. The last two solids
enjoy the chiral property, for 
which the symmetry gener-
ates differences. All AS can 
derive from PS by means of 
three main types of opera-
tions followed by different 
variations (Table 1). 

Fig. 1 - Construction process of thr dodecahedron through the synthetic method.
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Table 1 - Geometrical operations to construct the Archimedean Solids from the Platonic Solids.

Operation Variation Derivation

1. Planar section of the PS symmetric 
with respect to the vertices and...

1.1 ...passing through the edges centres Cuboctahedron
from the Cube and the Octahedron

Icosidodecahedron
from the Dodecahedron and the Icosahedron

1.2. ...passing through the third point of the 
edges

Truncated Tetrahedron
from the Tetrahedron

Truncated Octahedron
from the Octahedron and the Cube

Truncated Icosahedron
from the Icosahedron and the Dodecahedron

1.3. ...so that the central segment of the edge 
connects twice the number of face sides

Truncated Cube
from the Cube and the Octahedron

Truncated Dodecahedron
from the Dodecahedron and the Icosahedron

1.4. ...beyond the midpoints of the edges 
and leading to reversely homotetical or 
inverted polygons inscribed within the 
faces

Truncated Tetrahedron
from the Tetrahedron

Truncated Octahedron
from the Octahedron and the Cube

Truncated Cube
from the Cube and the Octahedron

Truncated Icosahedron
from the Icosahedron and the Dodecahedron

Truncated Dodecahedron
from the Dodecahedron and the Icosahedron

2. Planar Section of the PS symmetric 
with respect to the edges followed by 
symmetrical sections at their vertices

2.1 ...to obtain polygons homotetical with 
respect to the faces centers inscribed 
within the faces

Rhombicuboctahedron
from the Cube and the Octahedron

Rhombicosidodecahedron
from the Dodecahedron and the Icosahedron

2.2 ...to obtain polygons having twice the 
number of sides inscribed within the 
faces

Truncated Cuboctahedron
from the Cube and the Octahedron

Truncated Icosidodecahedron
from the Dodecahedron and the Icosahedron

3. Inscribed within the faces of the PS, 
a polygon having the same number of 
sides, but rotated in the same direction 
through a certain angle

Snub Cube
from the Cube and the Octahedron

Snub Dodecahedron
from the Dodecahedron and the Icosahedron

All the synthetic methods proposed allow us to obtain accurate constructions of the AS, since they are perfectly
executable with a straight edge and a compass (SE&C) (Fig. 2).
The difficulties are found only for the last two AS, those called chiral. To construct the snub cube, it is possible to adopt 
the graphic method proposed by Dragomir and Gheroghiu [04: 214-215]. The method consists in dividing the edge of 
the PS starting from a ratio defined by the equation:

2α3 - 4α2 + 4α - 1 = 0
From which the α value is equal to 0.352... The problem in the construction of the mathematical model consists in the 
approximation that the procedure involves, because the value of α is a relationship that we cannot express through a 
graphic construction with SE&C. This leads to an error in the construction of the solid, because the tolerance of the 
program, in most cases, does not recognize the vertices of the solid, as constructed, belonging to the circumscribed 
sphere and does not verify the solid's topology. The same problem arises for the construction of the last chiral solid, 
the snub dodecahedron.
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Fig. 2 - Construction of Archimedean Solids starting from Platonic Solids.
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It is not possible to construct the last two chiral solids via SE&C [05: 121-133]. The authors show, however,
that it is possible to construct the snub cube using the properties of origami controlling and using an analytical
language. We propose the same Weissbach and Martini’s demonstration, through synthetic representation. In
fact, it is possible to construct
the vertex A' of the snub cube,
starting from the cube that
envelops it. We call the top edge
g and the bottom left corner, P
(Fig. 3). We divide the edge of 
the base into four equal parts 
and call the second point from 
the left Q. We trace the two
vertical lines from the other two 
points and name the second h. To 
find the point A' it is sufficient to 
fold the plane in two so that the 
points P and Q, respectively, fall
 on the lines g and h. This fold 
is exactly the sixth axiom of
Humiaki Huzita. This fold allows 
us to find the points P’ and Q’ 
which give the coordinates of the 
vertex A' of the snub cube. 
It is possible to simulate the first
fold correctly, by inserting constructive constraints in the polylines vertexes. Once point A' has been found, through 
symmetry, it is possible to find all the missing vertices and edges of the snub cube. This synthetic method allows us 
to obtain the accurate construction of the chiral AS. The property of this sixth fold, as is known, is used to solve two 
other problems of classical geometry that are not possible to solve with SE&C, such as the trisection of the angle and 
the duplication of a cube.

The last synthetic method presented here allows us to construct any regular and semiregular polyhedra from its 
flat development (we developed this method with Riccardo Foschi, a Research Fellow of Bologna University).
This method, therefore, is the most flexible one and allows us to accurately construct even the snub cube and snub
dodecahedron (Figs. 4 and 5). The example shows the construction of the snub cube (and snub dodecahedron) start-
ing from its flat development. The construction principle is very simple and is based on the physical simulation of its 
solid construction. As Loria explains, if you actually try to build a regular polyhedron in the real world, the easiest 
thing to do is to draw a possible flat development and rotate the faces until the free edges touch. In this way, the only 
possible final solution is the one sought. It is evident that another final combination of faces is not possible unless the 
faces are rotated in the opposite direction: some clockwise and the others counter clockwise. In addition, in the latter 
case, the final result would not be a closed polyhedron. 
In order to apply this simple method we have employed a live physics engine within a mathematical modelling
environment (Kangaroo, a Rhinoceros plug-in). The procedure consists of these steps:

1) plan a possible flat development of the regular or semi-regular polyhedron to be built (Fig. 4 depicts a snub
cube);

2) now, set some constraints. Some vertices must remain fixed in the transformation (in the case study, we chose the 
five vertices of the central face); and all the edges must remain the same length.

3) apply active forces to some vertices; the vertices must be chosen with consistency and, of course, it is not
necessary to apply these forces to all the vertices of the figure.

Fig. 3 - Snub Cube construction via paper folding.
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 4) to start the simulation, it is necessary to apply an initial thrust otherwise the points will all remain in the same 
plane. We applied an initial down thrust to the vertices of the central face. In the mathematical virtual space, self-
intersections are possible, so there is no danger that inconsistent rotations of the faces will be generated; if this 
happens, the algorithm just  takes more time to reach the result. 

The delicate issue of this physical algorithm is the balancing of forces. We have noticed that when the individual 
weights of the forces are not well balanced, the algorithm generates imploded solids and fails to close the figure 
in an adequate time. In order to overcome this problem, it is necessary to experimentally find the right balance by
calibrating the forces involved (Fig. 4). Once the right balance is found, the figure begins to form and in a short time 
the solid is obtained (it is also possible to calibrate the time and speed of construction of the figure).
In the algorithm, we have included a check that automatically allows us to understand when the figure is correct, 
i.e. when the solid is perfectly closed. Kangaroo is based on the reiteration of the algorithm up to the optimization 
of the procedure after a certain number of attempts; the limit we have established is  the tolerance of the modeller in 
recognizing a closed solid; therefore, when the program recognizes the presence of a closed polysurface, it stops the 
process. The method was tested with regular and semi-regular polyhedral, but we believe that by well balancing the 
forces and the attractive weights of the selected vertices, it will be possible to solve the construction of more complex
polyhedra.

Fig. 4 - Construction process of snub cube starting from its flat development.

Fig. 5 - Construction process of snub dodecahedron starting from its flat development.

CONCLUSIONS 
The study of regular and semiregular polyhedra allows us to deeply understand the constructive potential of the
synthetic method. For example, the construction of the snub cube with the method of paper folding, without the
advent of the digital revolution, would have been inaccurate, because it would have been linked to the approximation
of the paper or the material  folded. Today, thanks to digital representation methods, we are able to experiment 
in space with an accuracy that was unthinkable only a few years ago. Scientific and technological progress has
widened the frontiers of the synthetic method and has found in computer graphics a means of interchange
between different scientific disciplines. The digital image has taken on a fundamental role in research. Drawing
becomes a tool for research and discovery of the properties and relationships of forms in space, increasing the
heuristic capacity of the synthetic method.
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ARTISTIC MATHEMATICS: TRUTH AND BEAUTY
I’ll talk about my work in mathematical visualization: making accurate, effective, and beautiful pictures, models, and 
experiences of mathematical concepts. I’ll discuss what it is that makes a visualization compelling, and show many 
examples in the medium of 3D printing, as well as some explorations in virtual reality and spherical video.
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MANUEL ARALA CHAVES 
Manuel Arala Chaves was Full Professor of Mathematics at the Faculty of Science 
of Porto from 1973 until 2003, when he decided to retire, in order to work full-time 
in the Atractor Association. Since the beginning, he has been the president of the 
board of this non-profit association, created in 1999 with the aim of raising public
awareness and attracting to Mathematics.
In 2000, Atractor was invited to create a large exhibition, entitled Matemática 
Viva. The exhibition lasted from November 2000 until August 2010 in Pavilhão do
Conhecimento (Lisbon) and it had more than 2 million visitors. 
In more recent years, Atractor focused on producing interactive virtual contents 
and exhibits, and many of them can be found on its homepage1. Other activities
include the DVD “Symmetry the dynamical way” (in 6 languages), several movies 
in the Atractor's YouTube Channel2, a large collection of interactive stereoscopic 3D 
mathematical contents in several different formats (3D TVs, side-by-side, anaglyphs, 
etc.) and some free software, like GeCla and AtrMini (both in several languages).

1 https://www.atractor.pt/index-_en.html
2 https://www.youtube.com/channel/UCymZYeiV6b-86ZpDM3_HspQ
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SYMMETRIES IN PORTUGUESE AZULEJOS
(AND WHAT THIS HAS TO DO WITH GEOMETRIES)
The abundance and variety of azulejos in Portugal can be used as a form of cultural tourism to illustrate the
mathematics of frieze and wallpaper patterns. As part of an ongoing project which we will describe, Atractor has
developed tools and created a large database of existing azulejos, which will be easily accessible to visitors.
It is well known that the number of types of symmetry for frieze and wallpaper patterns is not unlimited: in fact, there 
are only 7 + 17 different possibilities. However, not even all of these are to be found in houses, and there is a good 
reason for this. This is not impossible to overcome, and it would be interesting if a town decided to include all possible 
patterns among its houses.
It is not obvious why there is a limit to the number of patterns, and we will give an intuitive idea of the reason. It is 
then natural to ask what happens in non-Euclidean geometries. We will see why the argument fails in this case and 
that the result, in itself, is not true.
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AN INTRODUCTION TO SOLID TESSELLATIONS
WITH STUDENTS OF ARCHITECTURE
João Pedro Xavier1, José Pedro Sousa2, Alexandra Castro3 and Vera Viana4

KEYWORDS: Architectonic Tessellations, Three-dimensional Software, Architectural Design.

INTRODUCTION
This research intends to describe a didactic experiment on the exploration of solid tessellations, accomplished in 
the Geometry course of the 1st year of the Architecture program’s Master in the Faculty of Arquitecture of Porto's
University (FAUP). In this didactic experiment, digital three-dimensional modelling was explored as a recurrent tool 
to study and research the topics proposed.
From the vast subject of solid tessellations and its possible applications, students were guided to focus their attention 
on uniform tessellations, in which regular-faced polyhedra fit together “to fill all space just once, so that every face of 
each polyhedron belongs to one other polyhedron” [01: p. 68] In uniformly tessellated polyhedra, all the vertices are 
equally surrounded and superimposable under symmetries onto any other. For the sake of concision and feasibility, 
only six of the thirteen “architectonic tessellations” [02] were explored by the students in collaborative assignments. 

THE RESEARCH
For many years, the Geometry course in the Faculty of Arquitecture of Porto's University was entirely concerned 
with projective geometry based on the traditional systems of representation in architecture. However, since 2015, its
syllabus has been updated with the introduction of three-dimensional modelling software. Besides allowing students
to address a broader range of geometric themes (whose exploration through the traditional representational
systems would be harder to accomplish) 3D modelling allows students to focus more on geometry itself, than in
the representational procedures and its predicaments. When a student creates a virtual model, his/her attention
focuses mostly in the geometry of the objects, rather than in the representational system. The fact that digital tools
automatically provide an accurate representation of geometric objects, by itself, strongly enhances the students’
abilities for spatial visualization, mental rotation and geometric reasoning.
The introduction to digital 3D modelling is structured in a 5-6 weeks teamwork, in which students explore
Computer Aided Design (CAD) processes to study a selection of geometric subjects that might have a sturdy impact
on architectural design. Each year, a different topic is proposed, aiming to introduce students into themes that are 
generally unexplored within the course and whose complexity clearly justifies the use of digital media. 
On the academic year of 2016/2017, the teamwork focused on solid tessellations, with the following as main purposes:

- to introduce students into polyhedral geometry and in the subject of space-filling polyhedra and solid
tessellations, and their possible relations with architecture;

- to overcome the characteristic abstraction of their underlying geometrical structures, by regarding them from
an architectural - spatial - standpoint, and trying to explore, in the design process, their intrinsic spatiality; 

- to explore 3D computer modelling as a support (and driving force) to study, represent and communicate a
geometric design assignment.

1 Faculdade de Arquitectura da Universidade do Porto, Portugal (jpx@arq.up.pt)
2 Faculdade de Arquitectura da Universidade do Porto, Portugal (jsousa@arq.up.pt)
3 Faculdade de Arquitectura da Universidade do Porto, Portugal (macastro@arq.up.pt)
4 Centro de Estudos de Arquitectura e Urbanismo - Faculdade de Arquitectura da Universidade do Porto, Portugal (vlopes@arq.up.pt).
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TETROCTAHEDRILLE
8 Tetrahedra,
6 Octahedra.

TRUNCTETRAHEDRILLE
2 Tetrahedra, 
6 Truncated Tetrahedra.

CUBOCTAHEDRILLE
2 Octahedra,
4 Cuboctahedra.

1-RCO-HEDRILLE
1 Rhombicuboctahedron,
1 Truncated Cube,
1 Cube,
2 Octagonal Prisms.

TRUNCATED TETROCTAHEDRILLE
1 Cuboctahedron,
2 Truncated

Tetrahedra,
2 Truncated

Octahedra.

b-tCO-HEDRILLLE
2 Octagonal Prisms,
2 Rhombitruncated

Cuboctahedra

POLYHEDRA AND SOLID TESSELLATIONS
Studying and modelling polyhedra in the educational context stands as one of the most interesting subjects through 
which geometric concepts can be explored, given not only their tangibility, but the myriad of mathematical contents 
and branches they allow students to be introduced into [03: 135]. For higher education courses in which modelling 
and materializing space is a topmost concern such as Architecture, researches on polyhedra might be regarded as a 
valuable subject matter. This is particularly true for under-graduate students, especially if they are given the possibility
to model polyhedra virtually with three-dimensional modelling software, through which students can gain further
knowledge on geometric concepts and operations, while exploring them as if “directly in space” [04, 507]. The 
full extent through which students’ geometric reasoning can be stimulated and developed in a CAD educational
environment is yet to be determined, and the experiment we are currently presenting is but a minor contribution to 
this discussion. 
Understanding the conditions through which polyhedra can fill space around a vertex, and exploring the
concepts of “plesiohedra” [05], space-filling polyhedra, primary paralelohedra and the twenty-eight possibilities
[06, 07] through which polyhedra outline uniform solid tessellations or honeycombs, is of particular interest for
students of architecture, given their potential for architectural design, for instance, as constructive modules or
spaceframes. In this regard, six (Fig. 1) of the thirteen honeycombs considered as analogues to the semiregular plane 
tessellations, that Conway et al. designate as “architectonic tessellations” [02: 292-298], were selected as subject matter 
for a teamwork. 

Fig. 1 - The six Architectonic Tessellations selected for the teamwork (designations according to [02]).
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THE DIDACTIC EXPERIMENT
The subject of Solid Tessellations was proposed as leitmotif for a teamwork, in which students, divided in groups
of four, were asked to explore one architectonic tessellation, with the purpose of creating a spatial structure to be
placed at one of the exterior spaces of the Faculty.
The time scheduled for the assignment was six weeks, and involved six classes with an average of 24 students each.
The work was developed according to a methodology that comprised the following steps:

- The presentation of the theme and theoretical framework;
- A brief introduction to the software and demonstration of the commands that would be most relevant for the

assignment;
- An understanding of the geometric concepts involved, through preliminary modeling experiments;
- The design and development of the Project itself, 
- The presentation of the projects.

From the 28 different sets of convex uniform tessellations, six of the thirteen architectonic tessellations were
selected, and one of them assigned to each of the six groups of the different classes. Each group was then proposed
to manipulate virtual models of the different polyhedra of their tessellation, aiming to find out, by themselves, how 
each set would fill space. The task proposed afterwards aimed for students to diverge beyond the abstracting nature
of the geometric structure under analysis, considering different possibilities of conceiving a habitable structured
space to be installed in the garden’s setting of the Faculty.
Following a theoretical introduction, the development of the work in CAD environment was structured sequentially 
in the following phases:

Phase 1 - Tessellation’s modelling and research for its possibilities of multiplication through translation and rota-
tions, exploring different operations of geometric transformations;

Phase 2 - Adapting the geometrical structure conceived to the location chosen for the assignment, by adjusting its 
scale and orientation, and considering the pos-sibility of including a cutting plane, as a disruptive and 
creative element, that would trim the entire structure or only part of it; 

Phase 3 - With the geometric structure outlined, conceiving the materialization of the spatial structure, considering 
the following as rules: (1) structural bars in correspondence to the polyhedron’s edges, leaving its faces 
open; (2) total or partial closure of some of the faces, using its vertices as a drawing reference;

Phase 4 - Preparing the communication of the design project, through a poster and a short movie or, alternatively, 
a mock-up.

The accomplishment of this task by the six classes resulted in the production of 33 geometric structures with six
different convex uniform tessellations. The multiplicity and richness of the results, explicit on the different habitable
structures imagined, and their spatial diversity are a clear testimony of the vast potential that solid tessellations 
(and, particularly, the architectonic) might bring as a creative leitmotif for students of architecture. This statement is
particularly evident and interesting to look at, when we analyze different works developed from the same tessellation, 
that originated completely different spatial concepts, as shown in Figs. 2 and 3. 

CONCLUSION
Aiming to describe the whole experience in further detail, the full paper that this extended abstract intends to
propose, will discuss and acknowledge the potential that the described didactic experiment embodied in the context 
of the Geometry’s course to which it was proposed. This potential was confirmed, in many levels, by the students 
engagement with the challenge itself; through the contribution of the selected studies and researches on polyhedral 
geometry for the development of the students’ geometrical knowledge and spatial intelligence; the potential of digital
tools to support the development of the design process; and, more importantly, the way in which an improved
knowledge on the geometric concepts and operations involved was achieved.
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Fig. 2 - "(In)Tangível", Carolina Correia, Cynthia Machado, Nuno Delgado, Pedro Gouveia, 2016-17.

 Fig. 3 - "Ponto de Paragem", Eliana Santos, Inês Mateus, Joana Gonçalves, Matheus Aliseda, 2016-17.
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SOURCES AND FEATURES
OF THE SMALL STELLATED DODECAHEDRA PAINTED IN GENOA
Cristina Càndito1 and Ilenio Celoria2

KEYWORDS: Stellated Polyhedra, Small Stellated Dodecahedron, Five-Pointed Star,
Architectural Perspective, Perspective Treatises.

INTRODUCTION
The present study investigates the history, the significance, and depiction of a polyhedron painted in the Room of Leda 
as part of the decorative plan, started in 1655, of Palazzo Balbi Senarega in Genoa, Italy. The illusory golden oval vault 
is the main element in the Room of Leda, painted by Valerio Castello with quadratura by Andrea Seghizzi. It integrates 
various art forms in its painted architectural structure and figurative mythological insertions. In this same room,
one can observe six small stellated dodecahedra. Johannes Kepler, in 1619, was the first to describe this solid figure
comprehensively, even if there is an earlier representation in a Venetian mosaic attributed to Paolo Uccello. The study 
formulates a hypothesis for the meaning of these representations by drawing on scientific and symbolic sources as 
well as objective evidence that the authors observed on site, revealing that the representation of the polyhedron was
altered, in order to achieve an ideal shape.

THE FRESCOES OF PALAZZO BALBI SENAREGA
The subject of the study is a room inside Palazzo Balbi Senarega, constructed by Bartolomeo Bianco from around 
1616 for the brothers Giacomo and Pantaleo Balbi. From 1655, after a renovation by Pietro Antonio Corradi3, the 
second noble floor underwent the realisation of its decorative plan. The rectangular Room of Leda belongs to the 
original nucleus of the building and is covered by a cloister vault. The decoration of the vault by Valerio Castello with
quadratura by Andrea Seghizzi (1613-1684) displays a golden oval cupola resting on four sections, each with four 
ionic columns, standing upon marble pedestals alternated with polylobate cornices (Fig. 1).
Above the illusory impost, there are six painted circular windows alternated to six stellated polyhedra. The myth of 
Leda and Zeus, depicted in the form of a swan, is represented in a portion of sky inscribed in the central oval window, 
so to fully integrate various forms of art, in accordance to the Baroque style. The reason behind the representation
of a sensual but composed Leda together with the presence of the four deities Venus-Amor, Minerva-Prudence and 
Wisdom, Diana-Chastity, Mercury-Peace and Fortune [01: 277] could be that Barbara Ayrolo, wife of Francesco 
Maria Balbi, probably used this room. It is, in fact, located next to the Room of Hercules, which was Francesco’s
room [01: 13].

THE SMALL STELLATED DODECAHEDRON:
SCIENTIFIC AND ICONOGRAPHIC HISTORY
The polyhedron represented six times on the vault of the Room of Leda is a small stellated dodecahedron, which is 
a geometric figure obtained by extending the faces of a regular dodecahedron until twelve pentagonal pyramids are 
formed (Fig. 2). It is a regular polyhedron with regular identical faces, and edges of the same length - although it is 
not convex.

1 Architecture and Design Department, Italy (candito@arch.unige.it)
2 Architecture and Design Department, Italy (ilenio.celoria@unige.it)
3 For the building’s history with reference to the other sources, Magnani, Rotondi Terminiello 2003, pp. 57-58
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As it is known, the first systematic reference to the five regular polyhedra (tetrahedron, hexahedron, octahedron, 
icosahedron, and dodecahedron) is in the Timaeus by Plato (V-IV century BC). Many scholars have studied this topic 
since then, but only a few showed an interest in the stellated variants of these polyhedra. Among these, it is worth 
remembering Luca Pacioli in De divina proportione (Venice, 1509), dated 1498 in the inscription of his manuscript. 
The text includes 60 woodcut illustrations by Leonardo Da Vinci, representing regular solids and their stellated and 
sectioned variants, in the solid and vaqua (frame) version. Pacioli also described a stellated dodecahedron, which, 
unlike the regular solid previously described, is a generic stellated construction, where the pyramids show a reduced 
protrusion (charts XXXI and XXXII) (Fig. 3a). Similar observations can be made with other authors as well, i.e.

Fig. 1 - Palazzo Balbi Senarega (Genova, Italy), Room of Leda, orthophoto of the vault:
the six polyhedra (1-6) and details of the shadows (A-D; see Fig. 5).
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Fig. 2 - The small stellated dodecahedron: orthogonal and perspective view of the virtual model. The construction via extension
of the face of the regular dodecahedron (arch a for the rabattement of the pentagon’s height on the axis of the adjacent triangular face,

with indication of the apothem of the pyramid). The five-pointed star is highlighted in blue.

Daniele Barbaro (La pratica della perspettiva, Venice, 1569, p. 49) who described a stellated dodecahedron with much
higher pyramids than those of the small stellated polyhedron (Fig. 3b).
A comprehensive description of the small stellated dodecahedron was later formulated by Kepler (Harmonices Mundi, 
1619). With his work, Kepler wanted to provide a systematic treatise on plane and space tessellation, but developing 
this study also led him to the description of the small stellated dodecahedron (book II) (Fig. 3c)4, although it seems 
Kepler did not realise that this was in fact a regular polyhedron, even if not convex [02: 111]. 
Paolo Uccello (1397-1475), known for his interest in geometry and perspective, appears to have probably
preceded Kepler (Fig. 3d) in a mosaic (Venice, Basilica di San Marco, 1425-1431), where he represented the solid in
axonometry, with the exception of the central pyramid, which is slightly shifted to one side.

Fig. 3 - The representation of the stellated dodecahedra: a) Pacioli, 1509; b) Barbaro, 1569; c) Kepler, 1619; d) Uccello (?), 1425-1431.

4 Kepler also described the great stellated dodecahedron (12 stellated pentagons, 20 vertices, 30 edges), and in 1809, Louis Poisot demonstrated 
the duality of two other non-convex regular polyhedra: the great dodecahedron and the great icosahedron. Even Archimedes (287-212 a.C.) 
provided his contribution by introducing 13 semiregular solids, which can be obtained by truncating the platonic solids or by substituing
some elements.

a) b) c) d)
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THE SMALL STELLATED DODECAHEDRON IN THE ROOM OF LEDA:
GEOMETRIC CHARACTERISTICS AND SYMBOLIC MEANING
The representation of the geometric elements in the Room of Leda can be attributed to the quadratura artist Andrea 
Seghizzi. It is interesting for the purpose of this study to research his training, and the possible sources he might have 
used. There is a clear collaboration between the figure painter and the quadratura artist [03: 73] that could explain the 
numerous revisions made to figures and objects during the project’s execution, to refine this complex composition5.
Andrea Seghizzi learned the art of quadratura, while working in Bologna, Italy, with Agostino Mitelli (1609-1660). 
Regarding the sources that Seghizzi might have drawn on for the polyhedra, it is worth considering that artists and 
scholars were in contact and could have shared the latest findings published by Kepler or the representation of its
Venetian predecessor. Further clues might come from the Jesuit College, adjacent to Palazzo Balbi Senarega and that 
was partly paid for by the Balbi family itself. This connection led to the identification of potential sources used by 
Seghizzi, which were available at the time in the Jesuit library, and to the mathematics lessons by the Jesuit Giacomo 
Bonvicini, who left his written notes from that time.
Based on this research, a number of hypotheses can be put forward taking into consideration that the polyhedron in 
the Room of Leda is the regular small stellated dodecahedron, which becomes visible through the superimposition of 
the outline of one of its perspective images (Fig. 4). This graphic elaboration highlights some particular features of 
the polyhedron. Some of its parts were wilfully altered to obtain a perspective image that was closer to an ideal shape 
of the polyhedron: however, these distortions cannot be explained solely by the slight curvature of the cylindrical
surface onto which they are projected. In fact, there are two added pyramids that should not be visible in a frontal
view (in green in Fig. 4), but one can also see another alteration, i.e. the modified position of the other pyramids (the 
most evident in yellow in Fig. 4). Despite these alterations, it is still possible to recognise the continuity between the 
lateral faces of the pyramids with the pentagon of the adjoining base (blue line in Fig. 4), derived by the construction 
previously described (Fig. 2). Thanks to this geometric construction, it is possible to visualise the five-pointed star
and the apparent decagonal contour of the solid.

5 According to Gavazza [01: 13] this could prove that a collaborator of Valerio Castello participated in the decoration work.

Fig. 4 - On the right, the superimposition with the perspective image of Fig. 2 (with the Point of View placed
at the centre of the room), with the two pyramids added in the painting (in green) and the one that deviates

the most from the regular pattern (yellow). The blue line reveals the continuity between the lateral sides of the
pyramids with the pentagon of the adjoining base, so to show the presence of the five-pointed star. 
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This aspect prompted further research into the possible meaning of the polyhedra represented in the Room of Leda. 
Generally, regular solids are connected with the concept of geometric perfection. In ancient times, the five-pointed 
star symbolised health and harmony, after Pythagoras identified its golden ratios. This figure is associated particularly 
with Venus, the symbol of beauty. Venus was also painted in one of the allegoric representations on the vault - perhaps 
a homage to the future guest of the room, Barbara Ayrolo.

OBSERVATIONS ON SHADOWS
Further interesting aspects come to light when analysing the shadows of the polyhedra, the importance of which 
had already been explained by Magnani [03: 73]. The first distinct characteristic is the presence of form shadows 
alone. The addition of cast shadows would have required drawing more projected pyramids, thus generating a
superimposition of lines that would have compromised the artist’s search for clarity, as demonstrated by the
alteration of the perspective image.
The direction of the light that generated these form shadows is compatible with the room’s orientation, only when 
taking into consideration the real sources of light as well as the fake openings painted on the vault. In fact, without 
this additional source of light, a comparison of the polyhedra would be contradictory and, furthermore, would fail 
to explain the other form and cast shadows generated in other parts of the painted vault as, for example, the pedestal
of the painted columns (Fig. 5c) or the brackets of impost cornice (Fig. 5d).

CONCLUSIONS
The painted vault in the Room of Leda shows various interesting features, such as the first appearance in Genoa of the 
small stellated dodecahedron, the new geometric element introduced by Kepler in 1619. For this reason, the present 
study investigated a series of possible iconographic sources as well as the symbolic meaning of this polyhedron and its 
method of representation. It is here hypothesised that the distortions applied to the representation of the geometric 
solid in the Room of Leda, were executed in order to come closer to its ideal form and allegorical meaning. In fact, 
the perspective layout of the dodecahedron is altered by adding parts that should not be visible in a frontal view and 
by eliminating cast shadows. This signals the intention to place attention on the five-pointed star, revealed by the
artist’s use of shadows that strengthens the allegoric structure of the represented myths, and is a symbol of harmony 
and beauty, as a possible homage to the future guest of the room.
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Fig. 5 - The Room of Leda: detail of the shadows on the vault (see Fig. 1) showing that they are generated by the natural source
of light integrated by that coming from the painted openings: a) the upper surface of the opening on the east impost;

b) the oval window and the lunette at west; c) the pedestal at east; d) the brackets of the opening at north.
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THE “HELE” MODULE OF RAFAEL LEOZ. RESEARCH AND PHOTOGRAPHIC
DISSEMINATION OF MODULAR COMBINATION IN ARCHITECTURE
Joan Carles Oliver Torelló1

KEYWORDS: Módulo Hele, Rafael Leoz, Architecture and Photography, Photography and Geometry.

INTRODUCTION
The extensive iconic program promoted by the Spanish architect Rafael Leoz de la Fuente (1921-1976) to disseminate 
and deepen the aesthetic and constructive possibilities of the so-called "HELE module", is a significant example of the 
media strategy that accompanied his publications and public presentations. In parallel with the use of a language with 
symbolic geometric, social, and mystical connotations, Leoz relied on a powerful visual structure to legitimize his 
research, linked to contemporary artistic trends close to geometric abstraction and using a projective visual language 
inherited from experimental methodologies. The present work constitutes a historical and critical analysis of some of 
his photographs, in relation to the publication of the polyhedral module of his invention and subsequent development 
of the hyperpolyhedra, relating it, on the one hand, with the graphic and photographic tradition of modular represen-
tation in the field of artistic experimentation (especially prolific in the 1960s and 1970s) and, on the other, with the 
scenography and formal treatment of model photography and architectural projection in the indicated period.

RESEARCH
Rafael Leoz concentrated much of his research carried out between 1960 and 1965 in the publication Redes y Ritmos 
Espaciales [01]. Previously, he had worked with a team of architects in the construction of the Poblado Dirigido de
Orcasitas (Madrid, 1958), this being the starting point of his concerns for social housing and architectural
industrialization. From 1960 onwards, he devoted himself to developing a methodology that, through modular
geometric solutions, could be used as a guide for the work 
of the social architect. Along with the analytical function of 
diagrams and other drawings of plans and elevations that he
continued to make later [02], numerous photographs exem-
plify the most descriptive character of his method, visually
anchoring the consecutive and combinatorial complexity of his
discourse. As Leoz himself noted, photography had to become 
a mnemonic resource, a document to record the different
variables that could be adopted during projective ideation.
Analyzed as a whole, among the photographs that accompany 
the publication of Leoz, some can be distinguished as: repre-
sentations of solid geometric figures or combinations of these 
on neutral backgrounds (Fig. 1); sequences of images used to 
suggest interactions between figures (sections, deformations, 
displacements, etc.); images that use different angulations
and frames of the same modular combination; and, espe-
cially, photographs from views and scenographic perspectives

1 Universidad de las Islas Baleares, Spain (joancarlesoliver@gmail.com)

Fig. 1. Cube, Truncated Octahedron, Regular
Hexagonal Prism and Rhombic Dodecahedron.
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mounted on landscape or pictorial backgrounds (Figs. 2 and 3), up to bird's-eye views that show the urban integration
of his prototypes. Among these last views of scale models, stands out, due to its graphic presence, an untitled
double-page image of a group of apartments and residential complexes on the coast (Fig. 4), which years later
was attributed to a  group of houses designed by architect on the island of Mallorca [03: 11]. In this, regard, it has
been indicated that the project of a residence for 
workers in Mallorca, awarded in the III Hispano-
American Architecture Biennial (1956), would 
have been one of the first to awaken his interest 
in work with modulation [04: 37], and although, 
judging by the images, it does not seem to be 
about this same project, Leoz himself commented, 
in 1969, that the "urgency" with which they had 
to work for a "quite complex urbanization of a
summer center in Palma de Mallorca" (Spain, 
1960), together with the aforementioned works in 
Orcasitas, had made it possible to "intuitively find" 
the volume that would serve as further modular
investigations [05: 20].
The historical and architectural implications of the 
HELE module have been studied and contextual-
ized in various publications, especially by Javier 
López Díaz [04, 06, 07], in previous monographic
publications [08] and articles in the decade of the 
60s. His role has also been referenced in the sphere 
of the geometric aspects of Spanish art of the 60s 
and 70s and especially in a certain resurgence of 
this movement in the Sao Paulo Biennial of 1961 
[09: 136]. In our case, we want to focus not so 
much on the constructive consequences of Leoz's
theories, but on the role developed by the
visual and photographic corpus that integrates
his work. In this sense, our contribution is linked 
to the studies that have dealt with the relationships
between image and ideation or architectural
projection [10] and especially those that show the 
relationship between the history of photography
and architecture [11, 12]. In previous works, we 
have referred to certain factors existing in the
photography of scale models specifically around 
the images of Leoz [13], so that now we can deepen 
in the set of appreciations of the author on the role 
of this medium in the visual particularization of 
his geometric-symbolic system.
Initially, Leoz's work stems from the plastic con-
sideration of polyhedrons with central symmetry
that can fill the space completely: the cube,
the truncated octahedron, the regular hexagonal 
prism and the rhombic dodecahedron, all of which

Fig. 2 - Architectural model photography. 

Fig. 3 - Project of a group of homes in Mallorca based on the L module
(Architectural model photography).
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are capable  of forming a complete spatial network, and whose sections or basic triangles allow to develop reticles 
that the author calls set square and hemi-pythagorean triangle. From these, several flat networks are derived where
possible architectural applications are displayed, pursuing the discovery of a molecular, primary form, capable of 
linking geometry, aesthetics and functionality. At the end of the study, it includes the study of the tetrahedron,
the octahedron and the irregular clog, the latter under the influence of Matila C. Ghyka, transformed into Moebius
surfaces to obtain the "openwork polyhedra that continues to fill the space with its edges" [01: 288], suggesting a
reflection on the confusion between exterior and interior architecture 
in the Modern Movement. He focuses on the role of photography
in suggesting, "through the opportune changes of scale, a whole 
world of formal architectural projection" [01: 263].  This section 
of Leoz's publication constitutes a paradigmatic example of the use 
of photographic resources in architectural projection, both by the
deliberate use of color and by the pictorial backgrounds, that
contrast with the rectilinear accuracy of the modules and the close-
ups of reflections of what would be their Stained glass windows with 
L module (1971). Among them, the so-called Hyper-polyhedral 
Structuring of Space (Fig. 4), which exemplifies its interaction with 
concrete art and considers

"the most interesting symbolic and summarized volumet-
ric representation that I know of Architecture, its content, 
its functions and the interrelationships between all its
aspects and functions" [01: 156].

Leoz highlights among these combinations the "HELE module" (Fig. 5), composed of four hexahedra arranged in 
the form of a letter hele, which the author exhibited successfully at the São Paulo Biennial of 1961. The practical
application of this module was reflected in the 218 experimental dwellings in the neighborhood of Fronteras de
Torrejón de Ardoz (Madrid, Spain, 1973), promoted by the National Institute of Housing. Faced with the scant
architectural definition of his proposals, the terminological and conceptual richness of his research leads him to
attribute symbolic, mystical and social connotations to the interpretation of his module, with allusions to the sphere 
of the symbolic tradition of geometry and with authors such as Luca Pacioli or Matila C. Ghyka:

"The already historical studies of Vitrubio, of Vignola, of Luca Pacioli de Borgo, of Matila C. Ghyka, of Le
Corbusier, of Neuman, etc., on harmonic analysis, proportionality and regulatory plots, have a huge interest
for us [...] We must return to a kind of new Pythagoreanism in our profession, to work and conceive with
mathematical rigor, aided by the intuition of an almost mystical spirit." [01:15]

Fig. 4 - Hyper-polyhedral Structuring of Space.

Fig. 5 - The Hele Module considered as an architectural element.
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On the other hand, this geometric investigation was understood as an act of continuity with the artistic and
architectural processes of constructivist roots and rationalist claims, clearly linked to Le Corbusier and close to the 
rhetoric of the first avant-garde movements. In fact, another facet of the use of photographs in the articles of Leoz, 
although not directly in the case of Redes [01], connects with the editorial language of machinism and the New
Objectivity, through the metaphorical or conceptual photographic vision of objects, structures and images of nature
as cosmovision or iconographic maps of a chronological and vital paradigm. In the article "Humanism, research 
and architecture" [14], the author uses an extensive repertoire of references to scientific images, machinist elements,
diagrams and photomontages on proportion systems to exemplify how the interdisciplinary connection of knowledge 
of what should be participates in the new architecture.
Although Leoz mentions few names as responsible for the design and visual work of his works, and most of his photo-
graphs of models or modules of architectural ideation appear without signature or as anonymous among the work of 
other authors, this does not prevent the ascription of some of them to professional photographers related to the pub-
lication of photographs in architecture journals such as Francisco Gómez, especially those collected in Redes [01] but 
previously published in the journal Arquitectura [05: 110], which suggest closer approximations to the usual practice 
of photography of scale models in architecture. On the other hand, we know that Juan Miguel Pando had also made, 
on behalf of the Comisaría General de Ordenación Urbanística, images of the construction process of the town of 
Orcasitas, and it is likely that some of the images of the urbanization model in Mallorca published in
Redes could be ascribed to this same author. In another sense, it is worth mentioning the references of Leoz to the
artist Gustavo Torner for the help given in the editorial design of Redes [01], as well as the role of the model maker José 
Alcoba as his main collaborator in the realization of drawings and models. In any case, it is obvious that the research 
images respond to a team effort and stem from various sources or previous publications compiled by the author. The 
use of photographic series in these investigations implies a form of dissemination, philosophical and visual anchoring 
of their theories and, above all, a tool for organizing and documenting their achievements:

"We can predict that the large number of different compositions that will come out of our hands will suggest 
so many solutions that only a system of "memory", such as photography or unambiguous nomenclature, can 
make us remember everything we have composed." [01: 207]

The intuition that photography could capture scenes that would have had a conceptual or graphic prefiguration
is present implicitly in the author's language. Along with the rest of the graphics and forecast of technological
possibilities of other media such as television or computer, photography seemed to recover its prosthetic character, 
discourses on the ability to capture scenes not visible to the naked eye, or confidence in the role of the medium itself 
to generate a range of formal possibilities.

CONCLUSIONS
Apart from breaking down the different functions and characteristics assumed by the photographic image in the
diffusion of the theoretical work of Leoz, we associate this practice with a previous visual corpus and a "graphic life" 
of combinatorial and topological diffusion. In this representative tradition, from the first constructivist avant-gardes, 
the photographic series and similar formal structures are used, especially in the publications of previous authors in 
the 1950s and 1960s who disseminate their research in the field of experimental architecture and “combinatorial
structuralism" [15: 17]. In Spain, Emilio Pérez Piñero had developed a very similar photographic language [16]. 
Knowledgeable and precursor in Spain of this experimental line, Leoz extrapolates it to a more general system of
architectural application and imbues it with sociological and spiritual components. In the specific field of architectural 
projection of photography, given the variety of proposals and artistic resources used, his body of work occupies an
exceptional place.
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INVENTION AND ORDER:
THE PROPORTIONAL CONTRIBUTION IN JOÃO MENDES RIBEIRO’S ARCHITECTURE
Joana Maia1 and Vítor Murtinho2

KEYWORDS: Architecture, Proportion, Geometry, Order.

INTRODUCTION
On a journey marked by alternation of disciplines (architecture and scenography [01, 02, 03]) João Mendes Ribeiro 
(JMR) stabilizes a particular methodology worthy of analysis, fertile in interdisciplinary relations. Essence, efficacy,
abstraction, and elegance are characteristics that Graça Dias underlines in defining the work of JMR, qualities
naturally provided by "refinement, a delicate way of feeling and establishing proportions […], [setting] an accurate 
drawing"3 [04: 14]. Geometry is the instrument in a process of high management capacity where debugging, clarity 
of language, economy of means, are the result of surgical interventions capable of producing signification, flexibility 
and adaptability. The word proportion dominates this equation, where consistency and rigour extend from the prior 
study to the completion of the constructive process, in a salutary relationship between parts understood as a whole.
The invention of the project is sustained in the order component, intellectualizing a method that revives a forgotten 
theme in contemporary theory: proportional value.

RESEARCH
The aim of this research is to understand the role of proportion as a tool in contemporary project, in the methodology
of the Portuguese architect JMR (1960-)4. Graduated in Porto (1986), with a teaching practice linked to Coimbra’s 
School, he had the opportunity to work closely with figures such as Fernando Távora, a fact that consolidated his 
way of understanding architecture. The necessary care of project management, controlling a powerful focus of
social/personal transformation; the sensitive attention to the site; the recognition of history value; the importance 
of drawing; the solidity and enhancement of the construction process; the sensitivity to the potentiality of materials, 
are just a few assumptions shaped by an intense intellectual sharing with larger names of Portuguese architecture,
consolidating a praxis improved with experience. His method follows a minimal drawing of an assumed rationalist
bond, where the influences of Mies van der Rohe or Donald Judd are admitted by the author [05: 190]. This fact, 
sometimes touching abstraction and enhancing openings of experience and meaning makes, whenever possible, the 
bet of an understanding of space in metamorphosis, capable of introducing flexibility and adaptability as imperative
requirements of contemporaneity. If architecture tectonics seem to demand it more and more, the transience of
scenography emerges as an experimental field, promoting the transfer of ideas between disciplines. The notion of 
scenographic ephemerality (and representation) forays the field of architecture in an attempt to make the perenniality 
of architecture more flexible, incorporating also a certain dominant “magic” of the theaters atmosphere: if the case is 
verifiable in projects made from scratch, it is underlined in architectural heritage interventions subject to successive 
(because necessary) readaptations (Figs. 1 and 2).

1 PhD student, Departamento de Arquitectura, Universidade de Coimbra, Portugal (joana.maia@gmail.com)
2 Centro de Estudos Sociais, Departamento de Arquitectura, Universidade de Coimbra, Portugal (vmurtinho@uc.pt)
3 Free translation from: “refinamento, um modo delicado de sentir e estabelecer proporções […], [configurando] um certeiro desenho”.
4 This abstract is part of a broader research in progress, focused on understanding the value of proportion (in its classical Euclidean
version) in the practice of the contemporary project in Portugal. With a selection of nine architects configuring case studies, several works and
methodologies are analysed aiming to perceive, within a broad observation framework, not only the systemic types of practices and their
relation with the current cultural context, but also the definition of the concept in its full capacity. This research summarizes one of these cases.
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Despite the search for a synthesis that condenses 
only the essential, practice doesn't end in the math-
ematical abstraction revealing a humanistic concern 
extensible to a methodology rich in its personalized 
complexity. From the definition of the program to 
the analysis of the site; from topographic directives 
to guidance premises; from edified spaces to non 
edified ones; from the relationship building/body,
several are the routes of exhaustive knowledge 
able to establish bonds with the new intervention.
Regulating lines (of material or immaterial nature)
occur as connecting channels to establish precise 
links for the construction of an ordered design, 
with particular emphasis in an initial phase. Simple 
geometric figures, starting from the most perfect of
quadrilaterals5, arise as gauge for the construction of 
accurate definitions during the composition (Fig. 3)6. 
Modular systems appear as a stabilizing rule of particular importance, regarding the constructive matter and
stereotomy of materials. Different proportional systems are applied at different stages of the process, communing with 
the creative strand as well as a required constructive rationalization. However, it is important to note a continuity
and interpenetration of the different phases and systems, not being the choice of a dimension that supports the
development of the project a mere abstraction in relation to the: site, construction, concept, Man. It is up to the 
constructive phase to rigorously fine-tune the pre-established dimensions, with a particular focus on aligning the 
various systems adopted, now adjusted to detail without prejudice of the conceptual structure. Although, in this 
case, the geometric proportion largely surpasses the arithmetical proportion7, with no tradition in its numerical
logic and corresponding multiple and sub-multiple, this fact doesn’t result in contempt for the measure. A particular
anthropometric concern is played in first instance in the intuitive/sensory capture of the experience of the space, 
assimilated in knowledge by the fixation of the exact dimension. The measuring-tape is used daily by JMR for
continuous surveys of tested experiences, in order to obtain a database that is adequate to the comfort of his

5 “An obsession I have is the shape of the square [...]”, free translation from: “Uma obsessão que eu tenho é a forma do quadrado [...]”[06].
6 JMR keeps returning through the drawing to these diagrams, namely in the black notebooks of daily use, searching for the stabilized
dimensions for rectangular spaces: despite the minimum difference, the change of scale in length is considered relevant.
7 “I give the fundamental dimensions and the rule, and deep down these rules are what interpret the very concept of the project”, free translation 
from: “Eu dou as cotas fundamentais e dou a regra, e no fundo essas regras são o que interpreta o próprio conceito de projecto” [06].

Fig. 1 - Scenography “As orações de Mansata” (2013); Interior perspective of the Center of Visual Arts, Coimbra (1997-2003).

Fig. 2 - Scenography “Vermelhos, negros e ignorantes” (1998); Interior 
perspective of the Chimico Laboratory Museum, Coimbra (2001-2006).



GEOMETRIAS’19: POLYHEDRA AND BEYOND
FCUP | PORTO | 05 . 06 . 07 SEPTEMBER 2019

147

GEOMETRIAS’19: BOOK OF ABSTRACTS
ISBN: 978-989-98926-8-2 | https://doi.org/10.24840/978-989-98926-8-2

own body (Fig. 3). The criteria is, thus, that of the 
study of standard measures, not on a universal 
sense, but on the architect/character's own tested 
life setting proportions by way of dimensional
registration. From the fascination with the
minimal dimension or comfort of relationships,
to the tense provocation between bodies in space 
in restraint/liberation, he shows that proportion 
exists, although it does not function in the tradi-
tional pursuit of stable harmony, but in the search 
for emotional intensity. An investigation not
detached from the experience with scenography8.
It is proportion that supports the idea, even if
destined to escape a preconceived notion of
balance: both harmony and conflict can and 
should follow a path of rigour. The notion of glo-
bality also boosts the development of proportional 
exercise in both plan and altimetry, in the conju-
gation of pure volumetry and its real materiality, 
promoting the organism to an integrated whole.
In order to deepen this methodology where proportion plays a crucial role, two works by the architect of Coimbra
are proposed for analysis, exemplifying his theoretical thought.
The expansion of the house and the construction
of the swimming pool in Chamusca da Beira
are clear examples of a practice devoted to a
permanent proportional sense. A wall draws the
separation of “two eras”, a kind of an organic axis 
of conceptual symmetry. Topography emerges
as an initial theme, with other pre-existing
parameters (natural and constructed) contributing 
to the germination of the volumetric definition. 
The existing/proposed connection takes place in 
contracted axes, enhancing relations close to the 
body, taking the new volume defined not only by 
the ratio 3:1 of the organism in plan (seized in the 
elevation drawings), but also by the dimension 
0.105m (of the constructive scope). The modular
game also arises on the pool platform and its
attached dependence (along with regulating lines 
and 2:1 transverse ratios, from the module to the 
overall volume and platform), where volumetric
versatility based on mathematical systematization 
owe a lot to the scenographic experience (Fig. 4). 

8 In the work of scenography, JMR starts from the actual body of the actor as a generator of space, for a reciprocal interaction between
interpreter and physical environment, conforming a highly personalized process. In the practice of his architecture, that is to say in the "stage 
of life", given the impossibility of measurability, he assumes (himself) the role of actor/interpreter, projecting in the comfort of true users, his
personal comfort in the living of spaces [05, 291-302, 7, 8]. In this way, his research emphasizes a sensorial aspect, extendable to the interaction 
with its direct agent (the Man), showing its humanist inclination.

Fig. 3 - Study drawings: Sequence (square/√2 rectangle/golden
rectangle/square and a half rectangle); Measurements

(room of the Convent Sainte Marie de La Tourette, Le Corbusier).

Fig. 4 - Study drawings: Chamusca da Beira’s house (expantion), global 
perspective of the intervention; Chamusca da Beira’s swimming pool.
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The reflecting facades of the surrounding natural environment manifests itself in as an extra-systemic strategy,
extending proportional control to other spheres.
The Tea House in Montemor-o-Velho appears in a context of intervention in the architectural heritage. With all the 
symbology associated with the tea ritual, the project does not neglect geographic/orientation care. Nested within the 
ruins of the Alcáçova’s Palace (intra-castle walls), the new volumetry is drawn on an elevated platform configuring
interior and esplanade in a √2 relationship, whose character of detachment to the ruins follows the theoretical
directions of critical restoration of Cesare Brandi [09]. In a scenario where scenography forays the real space, the
modulating work, along with the accuracy of simple geometric figures or subtle symmetries, promotes the
systematization of an ordered composition, transferring protagonism to the pre-existence. As in the previous example, 
the centrality and precision in the alignments (elements, materials) competes for cohesion manifested in a clean,
unitary drawing (Fig. 5).
The analysis of the practice requires a necessary revision of the theory. In order to perceive the totality of JMR’s
method, improved by permanent self-criticism, it is necessary to intersect different scales by apprehending a
proportional work to: the territory and contextual environment (physical, historical, social), the scale of the
building, the constructive work, the relationship with the body. The need to implement an intellectual logic that
justifies the choices made (promoting the construction of a coherent design), is the motto required in a discipline 
where the inevitable inventive strand leads a conceptual narrative, yet properly controlled.

Fig. 5 - Model; External perspective of the Tea House; Study drawings.

CONCLUSIONS
The establishment of norms in the work of JMR is imposed not as a limitation but a guiding tool, leading to rooted
results that not only enhance procedural safety but also simplicity and clarity of justification, facilitating
communication between the various agents (project and construction). A “security matrix” ensures the “eternal
return” to the resolution of problems, where the appearance of accidents eventually occur as a fortunate event, 
due to the malleability they introduce into the system, contributing to an equilibrium of assumptions. If the word
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invention, in its etymological root, embraces both freedom (creation, discovery) and confusion (fakery, lie), order
emerges as an inevitable key capable of restoring "truth" in this interplay of independent, yet relatable, meshes
promoting the restitution of the real (because total) balance. In a current scenario where the complexity of
contemporary life proliferates, proportion arises with renewed significance to the encounter of new harmonies.
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POLYHEDRONS IN THE WOODEN TEMPLE ARCHITECTURE OF ANCIENT RUSSIA
Olga Melnikova1 and Svetlana Shuvalova2

KEYWORDS: Wooden Temple Architecture; Architecture of the Russian North; Ancient Russian Church.

INTRODUCTION
The author analyzes the compositional and tectonic features of religious buildings of old Russian architecture between 
the X and the XVII centuries. During many centuries of Russian history, wood was the main construction material,
even when there were buildings of natural stone and brick. This abstract denotes that the nature and physical
properties of wood as a building material largely determined the construction techniques and tectonics of architec-
tural forms of both ancient and modern churches. The originality of each temple building of that time was the result 
of new compositional combinations of a relatively small number of traditional forms. It was in the wooden architec-
ture that the main construction and compositional techniques were developed, which subsequently influenced the
formation of stone architecture [01]. Some of the studied buildings are preserved, but others do not exist at the present 
time. The existing buildings are: Nikol'skaya Church in the village Lavle, Arkhangelsk region (1587); the Church of 
Dmitri Solunsky, which is situated in the village of Verhnya Uftuga, Krasnoborsky district of the Arkhangelsk region 
(1784); the Ascension Church in the village Kusherek (1669); the Church of the Transfiguration of the Kizhi Pogost, 
(1714). The non-preserved building is the Church of Michael the Archangel, built in the village Yuroma in 1686.

RESEARCH
Architectural archeology allows us to look into the early period of the development of wooden architecture 
of the old Russian state, and the preserved monuments give us the opportunity to trace the evolution of wooden
architecture until the present day. The most preserved monuments of wooden architecture are located in the 
Russian North. As they are located in a relatively favorable natural environment, they were not affected by the
Mongol-Tatar yoke and the later post-reform reconstruction [02]. It is here that you can explore the formation and 
development of the main types of religious buildings, to study the basic composition and planning techniques, as well 
as to retrace the obvious principles of the relationship between nature and architecture.
Obviously, the organization of ensembles of residential, commercial and 
religious buildings in villages was caused by the unity of the building
material: the average length and diameter of the logs set the vertical
and horizontal rhythm and module of all buildings of that time. To
determine the size of future buildings, Russian masters have developed 
a system of simple relations, which were based on the Russian system of 
measures sazhen associated with the average size of the human body. The 
main element of almost any building of that time was a square crate. The 
ratio of the square side to its diagonal formed the basis of conjugation 
principle of Russian measures: measuring moving sazhen - side of the 
square (176,4 cm) and the great slanting sazhen - its diagonal (249,5 cm).

1 Saint-Petersburg State University of Architecture and Civil Engineering, Russia (melnikova.gasu@yahoo.com)
2 Saint-Petersburg State University of Architecture and Civil Engineering, Russia (shuvalova.gasu@yahoo.com)

Fig. 1 - Russian system of measures (the stylized drawing) [03].
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And the rest of the length measures used in the construction related to each other as a side to the diagonal of the 
square. Old Russian measures of length allowed the constructors to feel all the time the size of a man during the
construction. The same cannot be said about modern design, because it operates with the abstract meter. The methods 
of proportionating measures developed in wooden architecture were later passed into stone architecture.
It should be noted that the old Russian system of proportions was the result of a close harmonious relationship
between the size of the structure and the nature of the architectural form [03]. But, in addition, another flexible system 
of proportions was used, based on the principle of geometric similarity of the facades of the building and its details, 
which allowed one to feel the uniqueness of each structure with the repeatability of its elements. At the heart of this 
system, is the property of our vision, which allows us to recognize various objects which are distant from the observer 
or unequal in size and  have a common structure (composition); the similarity of the elements helps to  memorize this 
composition.
In the construction of wooden religious buildings masters used different compositional techniques. So, constructions, 
square in the plan, were often overlapped on eight slopes (with pediments on each side) or the crossed barrel roofs
("cruciform barrel"). Centric building (quadrangle; octagonal) of small height were overlapped with four-sided
pyramid, which was called a "cap", and taller ones were called polygonal pyramid, which had the name "the tent".
Sometimes, the building was crowned with another type of coating: the "cube". It is a kind of tent, but with the outlines 
reminding a profile of a barrel, and differing in good resistance to wind loading. In the temples, both tents and cubes 
ended with the cupola, which was often faceted.

Fig. 2 - Architectural terms (the stylized drawing) [03].

Historical documents have not brought to us reliable information about the oldest religious buildings of Russia, the 
pagan temples, since, in the annals, there are only references to them. But there is no doubt that the scheme of church 
buildings, borrowed along with Christianity in Russia has undergone some changes. These changes concerned not 
only the arrangement of additional premises (for example, the refectory), but also led to the search for new images 
and forms for the structures and new methods of planning. So, to increase the area of the room, while maintaining the 
length of the log, builders began to use the shape of the octagonal structure, and the logic of overlapping such rooms 
led to the appearance of the tent.
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Tent churches perfectly matched the multifunctionality of religious buildings as the only public buildings of the
Russian Middle Ages. They represented an aspiration to God and the dream of height implementation as the ideal 
of beauty. In cities and villages, they served as the main buildings, where many temporal matters were solved. In
addition, they were the landmarks by which the village was recognized from afar [03].
Vertical tent churches emphasized the calm outlines of the Central and Northern Russia landscape as well as possible. 
But, it is worth noting that the external and internal volumes of high temple buildings do not always coincide. To 
achieve greater proportions, the interior premises of the temples were reduced to 1/5 - 1/3 of their external volume 
by means of seam ceilings. The heights of the temples were designed for perception from large distances, and often 
reached 25 - 45 m.
There are not many tent churches-towers, 
built as the octagon from the ground, which 
survived to our time. The oldest of them
is the Nikolskaya Church in the village Lavle 
of the Arkhangelsk region, built in 1587. It 
is the oldest type of construction in which 
the tents, the necks and the cupolas have the 
shape of polyhedrons. In the XVII century, 
octagonal temples were crowned with the  
same curvilinear cupolas on the same curvi-
linear necks, which had a direct impact on the
overall proportions. Refectories changed as
well: if before they were relatively small, later 
on, they developed into frame refectory-am-
bulatories, encircling the octagon on three 
sides.
It should be noted that, with a single well-
established scheme of octagonal temples, the 
harmony and proportions of each of them
are deeply individual. The ultimate fusion of structural and compositional components, their emphasis on height and 
monumentality contributes to the figurative expressiveness of octagonal tent temples. This also contributes to the
symmetry of all volumes relative to the longitudinal axis. A sense of solemnity is generated by a gradual increase in the 
premises of the temple as you move inside: the porch - ambulatory - refectory - narthex - the very room of the church, 
which ended with a painted iconostasis with tiers of icons that are illuminated through the side windows.
The interior of the Peter and Paul Church in Puchuga village on the Northern Dvina river, built in 1698, but not 
preserved to our time, was very interesting. Presented in contrast to its harsh appearance, it was one of the highest
achievements of Russian wooden architecture. Walking up the porch and passing the seni (narthex), one would reach 
the spacious refectory. The middle beam was supported by two massive pillars. There were carved benches along 
the walls of the refectory. On the axis of the refectory, was the entrance to the church in the form of a double portal,
decorated with carvings and paintings. The long windows-slots of the refectory were arranged so that the service 
could be heard, and were decorated with carvings and wrought iron grill. The high volume of the church seemed even 
higher in comparison with the refectory, thanks to two slender carved pillars supporting the second beam. Next there 
was an iconostasis with tiers of icons, illuminated by four windows.
Tent-like temples built as the "octagon on quadrangle" became very common in the second half of the XVII and XVIII 
centuries. An example of this type of temple is the Church of St. Demetrius in the village of Upper Uftuga in the
Krasnoborsky district of the Arkhangelsk region, built in 1784. The high quadrangle organically enters the octagonal
volume and is completed with a powerful pyramidal tent with a small cupola. The barrel-covered apse from the 
East, and the small frame gallery from the West, do not disturb the vertical aspiration of this severe and majestic
temple.

Fig. 3 - The Nikolskaya church.
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The search of the silhouette and three-dimensional expressiveness 
of Russian temples by national architects has led to the emergence 
of the original school in the steepled church architecture in the 
XVII century [03]. It created a type of a church, with a cruciform
barrel covering, onto which an octagonal tower was put. This
coating was called “a tent on a cruciform barrel." In addition to the
peculiarity of the silhouette, this coating (legalized by the time, and 
in accordance with the reforms of Patriarch Nikon in the 1650s), 
allowed to construct five-cupolas churches and, at the same time, 
maintain the traditional national form of tent-like temples.
In conclusion, we would like to consider the multi-cupola
churches, the extensive composition of which was developed in 
the early XVIII century, based on the traditional octagon with four
additional structures or twenty-walled log construction. There are 
two temples with such a composition, the construction of which,
in fact, completed the development of Russian wooden temple
architecture. An early structure, built in 1708 but, unfortunately,
not preserved, was the Pokrovsky Cathedral in the village of
Ankhimova, the Vologda region. The second one is the Transfigu-
ration Church of the great Kizhi churchyard, which was built six 
years later, in 1714. At the first glance at the multi-cupola pyramid 
of the Transfiguration Church, it becomes clear that this structure 
represents the art of the Northern Russian architects.
The first two tiers (eight cupolas) are formed by the hipped–roof method with the two barrels, each barrel has four 
wooden additions. The third tier (eight cupolas) is formed by the barrel completion of all eight sides of the main
octagon. The four cupolas of the fourth tier are placed on barrels adjacent to the second octagon. And finally, the 
whole composition of the 22-cupolas temple is crowned by the central cupola, standing on the second octagon. On the
diagonal faces of the main octagon at the level of the upper barrels, overlapping the wooden additions, decorative
 "kokoshniks" are placed, echoing the rhythm of the second tier’s barrels.
Despite the compositional 
complexity of the Church of
the Transfiguration, its sil-
houette pyramidal volume is 
single and very clear. Best of
all, the temple is perceived 
from a long distance, which 
was very convenient at a time 
when the lake Onega was part 
of the ancient trade route. 
From nearer perceptions, it 
can be seen that the complex
multi-cupola composition of 
the temple seems as if con-
stantly changing as you move, 
fully conforming with the ten-
dency towards the decorative
effect typical for that time. The 
appearance of this memorial 

Fig. 4 - The church of Dimitri Solumsky.

Fig. 5 - The Church of the Transfiguration.
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church is, undoubtedly, connected with the rise caused by Russia's victories in the Northern war, which ended
the Swedish claims to the Northern Russian lands. The Transfiguration Church in Kizhi is one of the greatest
achievements, not only of the Russian, but also of the world architecture.

CONCLUSIONS
Our study showed that folk architects, observing the canonical scheme of religious buildings, were able to give the 
planned techniques, much diversity and originality, which was due to, among others, the constructive possibilities 
of wood material. Each of these techniques has been aimed at creating the maximum diversity in both volume and
silhouette decisions to the main public buildings of towns and villages, from harsh ascetic octagonal temples of the 
XVI century, to the temples that are rich and diverse in plastic and silhouette decisions, built in the XVII and XVIII 
centuries. Empirically taking advantage of one of the most important properties of the human eye, which is an acute
perception of the silhouette outlines of objects and structures alike, the church architects paid great attention to 
the search for a unique kind of coating forms for the temple buildings, reaching outstanding success. All of these
factors allowed the wooden architecture of Russia to take a special place in the world architecture. Currently, there is a
growing demand for the construction of wooden churches in Russia [04]. This means that the reconstruction of 
lost buildings and the preservation of the existing wooden churches of the Russian North will contribute to the
preservation of the Russian temple architecture identity, which has a particular value during the domination of the 
global international style.
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JAVIER BARRALLO
DIDACTIC EXPERIENCES WITH POLYHEDRA
     
This workshop relates closely to the lecture of the plenary session with the same title.
It will consist in the assembly of some polyhedra, featuring different materials and techniques. We pretend to recover 
didactical experiences with handcrafted polyhedra constructions, that have been displaced in the last years by the 
explosion of three-dimensional printed models. Handcrafted polyhedra allow the introduction of mathematical and 
geometrical concepts in a very enjoyable and accessible way for the classroom.
Both individual and group constructions, during the workshop, will feature connections with topics like Fractals, 
Topology or Tensegrity, and will exercise the scientific and manual skills of the participants. No previous knowledge 
in the field is required, just the desire to play and experiment with geometry and take home beautiful polyhedra as 
souvenir.

WORKSHOP 01
07 . 09 . 2019 | SATURDAY, 14h30 - 18h00
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RINUS ROELOFS
MAKING PAPER POLYHEDRA MODELS    

INTRODUCTION
Making paper models of regular polyhedra was, as far as I know, first described by Albrecht Dürer in his book
Unterweissung der Messung, first published in 1525. One of the pictures in this book is the folding plan of the
icosahedron (Fig. 1a). Most probably Dürer was not aware of the fact that this folding plan also could be used to
make another uniform polyhedron, the tetrahelix. One folding plan, two different polyhedra models!

WORKSHOP 02
07 . 09 . 2019 | SATURDAY, 14h30 - 18h00

STARTERS
A few simple exercises to continue with: two polyhedra combined in one model.
In the first one we see the tetrahedron combined with a cube. The total model is made from 4 equal pieces. The second 
model is a so-called “double tetrahedron”, one model with a double skin. Also the third model has a double skin: the 
“double-cube”. For both models we first need to weave the 2 basic parts.

MAIN COURSE - FIRST DISH
In this part of the workshop a new way of making double models is introduced. In the introduction we started with 
just folding. In the starters we have seen a combination of weaving and folding, and now the complete procedure 
is “folding-weaving-folding”. Again we will see combinations of 2 polyhedra in one model. The first model is the
tetrahedron within the cube.

Fig. 1

Fig. 2
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The second model is the cube within the dodecahedron. For this model two different versions can be made.
The second one, with 3 equal parts has some connections with the Borremean Rings.

In the third picture, we see the models in which the outer skin is opened, in this way we can understand the total 
construction. In the workshop Both models will be available opened and closed.

MAIN COURSE -SECOND DISH
We don’t have to limit ourselves to the Platonic solids. Kepler and Poinsot introduced new regular polyhedra which 
themselves have a double skin. Stellation is introduced by Kepler and in our model we apply this technique onto the 
rhombic dodecahedron, a polyhedron with 12 faces. For our model the faces have to be extended to make the stellated 
version of the rhombic dodecahedron, which is also known as the Escher-star.

Fig. 3

Fig. 4

Fig. 5
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The second model is the great dodecahedron, also made from 12 parts, and first discovered by Poinsot. Models 
of Poinsot’s polyhedra are very rare. With the technique we have used to make the Escher-star, which is “taking 
away parts of the faces where they intersect”, we can also make a model of one of Poinsot’s polyhedra, the great
dodecahedron. With twelve parts, we can make this intriguing model.

DESSERT
We will finish the workshop with a nice dessert.
In 2003, Branko Grünbaum published some ideas with which new uniform can be created. One of his methods is 
called “doubling the faces”. When we double the faces of a cube, we can rearrange the connections of the squares in 
such a way that the 12 square faces will again form a regular polyhedron. The way of connecting the faces is, in fact, 
the same as our “double cube” model.
In this model, only some of the faces are doubled. The total model, again is a uniform polyhedron.

Fig. 6

Fig. 7
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SHORT BIOGRAPHIC NOTES OF THE AUTHORS, MODERATORS AND SPEAKERS
(listed by the surname’s alphabetical order)
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focused on descriptive geometry and its applications, with particular interest in its renewal by means of digital methods of
representation.

BANJAC, BOJAN
PhD., is teaching assistant at Faculty of Technical sciences, University of Novi Sad. He obtained bachelor and master degree 
of Electrical engineering and computer science at School of Electrical engineering, University of Belgrade, and is currently 
finishing his PhD studies of Applied mathematics at the same faculty. His fields of research are software engineering, applied
mathematics, computer graphics, computer geometry, artificial intelligence, computer vision and 3D modelling. He is author 
of more than 20 papers published at international journals and conferences. He is also technical editor of Journal of Applicable 
Analysis and Discrete Mathematics.

BARRALLO, JAVIER
47Javier Barrallo was born in Bilbao, where he studied and obtained a Ph.D. Degree in Computer Engineering at the Univer-
sity of Deusto. Javier is Professor at the UPV-EHU (University of the Basque Country) where he teaches in the Department of
Applied Mathematics at the School of Architecture in Donostia-San Sebastián. Javier specialized in the relationship between Art &
Science, dynamical systems including fractals and chaos, parametric programming of complex shapes and the scientific analysis
for the structural maintenance and repair of heritage buildings. Javier Barrallo has written over 100 papers and books,
collaborated in 15 interventions on historical heritage buildings, organized 12 International Conferences and events and arranged 
30 international exhibitions. 

BEVILACQUA, MARCO GIORGIO
Marco Giorgio Bevilacqua is Associate Professor of Architectural Representation at the University of Pisa. His research interests 
are in the field of valorization of the historical architectural heritage, with particular attention to historical military architecture, 
architectural and urban survey and digital technologies for the communication of historical architectural heritage. He currently 
teaches Architectural Representation and Methodologies for Architectural surveying in the Master degree program of Building 
Engineering and Architecture at the University of Pisa.



164

GEOMETRIAS’19: POLYHEDRA AND BEYOND
FCUP | PORTO | 05 . 06 . 07 SEPTEMBER 2019
GEOMETRIAS’19: BOOK OF ABSTRACTS
ISBN: 978-989-98926-8-2 | https://doi.org/10.24840/978-989-98926-8-2
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Mateja Budin was born in Ljubljana, Slovenia. She studied applied mathematics at the Faculty of Mathematics and Physics,
University of Ljubljana. In 2003 she established Mathema, Institute for popularization of mathematics. She is the co-founder of the 
Foundation Mathema Art, she runs the House of Polyhedra and two national competitions in Slovenia.

CÀNDITO, CRISTINA
Cristina Càndito is Associate Professor in Drawing and Representation and member of the teaching body of the PhD program at 
the Architecture and Design Department, University of Genoa. She holds degree in Architecture (1991) and Modern Literature 
(1998). She obtained her PhD in Drawing and Surveying in 1999. She taught at the Polytechnic School of Milan and she was
Architect at the Regional Board - Ministry of Cultural Heritage in Bologna and Genoa. Her teaching and research activity
concerns Drawing, particularly Descriptive Geometry and History of Representation, through applications based on traditional 
and dig-ital methods, about Architectural Perspectives and cultural accessibility.

CASTRO, ALEXANDRA
Alexandra Castro is an Invited Assistant at the Faculty of Architecture of the University of Porto.
She is graduated in Architecture (FAUP, 2002), holds a master in Methodologies of Intervention in the Architectonic Heritage
(FAUP, 2009) and she is currently developing her PhD research that is focused on the relationship between geometry and
contemporary architecture, from the perspective of the impact that digital technologies have on architectural practice. Since 2013 
she is a researcher at the Centre for Studies in Architecture and Urbanism of FAUP.  On 2010 she founded with the architect 
Nicola Natali the architectural office "Castro Natali".

CELORIA, ILENIO
Ilenio Celoria following his degree in Architecture at the University of Genoa (2000), he developed his interest in teaching and 
research in photography. He has been teaching Photographic Technique since 2001 at Leardi’s High School (Casale Monferrato). 
He is currently Contract Professor at the Polytechnic School, University of Genoa, in the course of Photography and Digital
Imagine (Master Degree in Digital Humanities). His photographic projects have been exposed at the Venice Biennale, the
Museum of Natural Sciences in Turin, Mu.Ma, Sant’Agostino Museum and Palazzo Ducale in Genoa, in the Istituto italiano di 
Cultura in Cologne, Vienna e Prague and in other Italian and foreign cities.

CHAVES, MANUEL ARALA
Manuel Arala Chaves was Full Professor of Mathematics at the Faculty of Science of Porto from 1973 until 2003, when he decided 
to retire, in order to work full-time in the Atractor Association. Since the beginning, he has been the president of the board of this 
non-profit association, created in 1999 with the aim of raising public awareness and attracting to Mathematics. In 2000, Atractor
was invited to create a large exhibition, entitled Matemática Viva. The exhibition lasted from November 2000 until August 
2010 in Pavilhão do Conhecimento (Lisbon) and it had more than 2 million visitors. In more recent years, Atractor focused on
producing interactive virtual contents and exhibits, and many of them can be found on its homepage. Other activities include 
the DVD “Symmetry the dynamical way” (in 6 languages), several movies in the Atractor's YouTube Channel, a large collection of
interactive stereoscopic 3D mathematical contents in several different formats (3D TVs, side-by-side, anaglyphs, etc.) and some 
free software, like GeCla and AtrMini (both in several languages).

CORNIELLO, LUIGI
Luigi Corniello is an architect, PhD in drawing of architecture and Research at the Department of Architecture and Industrial 
Design of the University of Campania “Luigi Vanvitelli”.
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Adolfo Pérez Egea holds a degree in Architecture from the Universitat Politècnica de València and a Master’s Degree in
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Federico Fallavollita, Architect, is an associate Professor at the Department of Architecture of Alma Mater University of Bologna. 
In 2008 he earned a PhD in Sciences of Representation and Survey at the Department of History, Representation and Restoration 
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Universidad Politécnica de Valencia. His PhD dissertation was entitled ‘Energetic Artifacts. From Fuller to Piñero (1961-1972)’, 
and he obtained his doctorate at the Department DPA at the ETSAM at the Universidad Politécnica de Madrid. He has been a 
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Lorenzo Giordano is an architect, PhD student at the Department of Architecture of the University of Napoli “Federico II”.

HAFNER, IZIDOR
Izidor Hafner was born in Ljubljana, Slovenia, in 1949. He received a bachelor’s degree in 1972 and a master’s degree in
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HANSMEYER, MICHAEL
Michael Hansmeyer is an architect and programmer who explores the use of algorithms to generate and fabricate architectural 
form. Recent work includes the design of two full-scale 3D printed sandstone grottos, the production of an iron and lace gazebo 
at the Gwangju Design Biennale, and the installation of a hall of columns at Grand Palais in Paris. He has exhibited at museums 
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degree from Columbia University and an MBA from INSEAD.

HUYLEBROUCK, DIRK
Dirk Huylebrouck worked at universities in the Congo for about eight years until a diplomatic incident interrupted his stay. He 
went to the University of Aveiro, Portugal, and the European Division of Maryland University, until the majority of his American
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(Paris), or the Institut für Architektur, at the Technische Universität in Berlin. Currently, he is professor of Architectural Design 
Projects in the ETSAE, and is a member of the GRAMMAR R+D Research Group at UPCT (Spain).

MARTIN-PASTOR, ANDRÉS
Andrés Martin-Pastor [ORCID: 000-0002-5588-2886] is an architect with a Ph.D. from the University of Seville (Spain), 
where he currently works as a lecturer in the Department of Graphic Engineering. His research is focused on perspective and
geometry in architecture, and covers a broad range from inherited graphic traditions until the digital tools of today. His research
also includes the study of developable surfaces and their applications in lightweight architecture. He has lectured at several
International Universities and published books, chapters and articles.

MATOS, HELENA MENA
Helena Mena Matos is a professor in the Department of Mathematics of the Faculty of Sciences at University of Porto and
researcher at the Mathematics Center of the University of Porto. She holds a Ph.D. in Mathematics from the University of Porto 
and, in parallel with her teaching and research activities in fundamental mathematics, she has a strong interest in the connections
between mathematics and the visual arts.  She also dedicates part of her time to the dissemination of mathematics through
lectures for regular and artistic high school students in various schools in the country, lectures for teachers and lectures and
debates for the general public.

MATSUOKA, ATSUSHI
Professor of the department of geology, Niigata University, Japan. Main interests include evolution and ecology of radiolarians 
and ammonoids, paleoceanography, and plate tectonics.
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MELNIKOVA, OLGA 
Architect, PhD student, Senior Lecturer of the Faculty of Architecture, Saint Petersburg State University of Architecture and Civil 
Engineering (SPbGASU), https://www.spbgasu.ru/Universitet/Vuz_v_licah_2/nameМ/id773/. Olga Melnikova graduated from 
St. Petersburg state University of architecture and civil engineering in 1998 and qualified as an architect. After more than a decade 
of professional architectural activity, she entered the postgraduate program of SPbGASU and finished the course in 2013 with a 
degree in engineering psychology and ergonomics. Currently she is a senior lecturer at the Department of descriptive geometry 
and engineering graphics. The sphere of scientific and professional interests includes: improving methods of teaching the disci-
pline "descriptive geometry" for students of architectural specialties; studying the basics of users’ perception of the architectural 
environment; aspects of the modern architectural environment formation in the concept of Sustainable development; architec-
tural heritage as the basis for the formation of sustainable architecture. Has been a participant of more than 10 international 
scientific conferences.

MIRRA, ENRICO
Enrico Mirra is an architect, PhD student at the Department of Architecture and Industrial Design of the University of Campania 
“Luigi Vanvitelli”.

MIŠIĆ, SLOBODAN
Slobodan Mišić, Associate Professor, graduated in architecture from the University of Belgrade and has been employed in 
the Faculty of applied arts in Belgrade. He took his Ph.D. in 2013 with a thesis entitled “Constructive – geometric Generating
of Cupolae with Concave polyhedral Surfaces”. In his scientific research, he is engaged mostly in general collinear planes,
constructive geometry and polyhedral structures in architecture, engineering and arts.

MURTINHO, VITOR 
Vitor Murtinho (1964). Architect, is Associate Professor at the Department of Architecture, University of Coimbra (UC),
Portugal. Since 1988 teaches Geometry and in Theory and History areas of the Degree Course, Integrated Master’s Programme 
and 3rd Cycles Studies in Architecture. Is senior researcher at the Center for Social Studies of the UC and has interests in 
the domain of Renaissance theory, architectonics of form and geometry. He was Vice-Rector (March 2011-February 2019) 
of the UC with responsibility for the heritage, buildings and sustainability. Is the author or co-author of about one hundred
publications (Books, books chapters, papers in scientific journals and in conference proceedings). Has participated in several 
Aproged’s conferences. More detailed publications in: http://ces.uc.pt/en/ces/pessoas/investigadoras-es/vitor-murtinho/publi-
cacoes.

OBRADOVIĆ, MARIJA
Marija Obradović, architect, is an Associate Professor of Faculty Civil Engineering at the University of Belgrade, Serbia. She 
is teaching Descriptive Geometry, Computational Geometry and Visualization and presentation of 3D model in geodesy. She 
has participated in several national projects dealing with the development of technology and digitizing of national heritage,
including the application and visualization of geometric contents. She authored two books, and over 70 scientific papers published 
in national and international journals and proceedings of scientific conferences. Her main interest concerns concave polyhedra of 
the second sort, introduced in her Ph.D. thesis: “Toroidal Deltahedra with Regular Polygonal Bases”.



170

GEOMETRIAS’19: POLYHEDRA AND BEYOND
FCUP | PORTO | 05 . 06 . 07 SEPTEMBER 2019
GEOMETRIAS’19: BOOK OF ABSTRACTS
ISBN: 978-989-98926-8-2 | https://doi.org/10.24840/978-989-98926-8-2

OBRADOVIĆ, RATKO
Ph.D., is a Full Professor at the University of Novi Sad. He is head of the Chair for Computer Graphics and also the founder
and head of Computer Graphics – Engineering Animation Studies. His research interests include: Computer Graphics,
Computational Geometry, Animation, CAD, Scientific Visualization, Simulations, Virtual and Augmented Reality, Higher
Education. He is a member of the ICGG (International Society for Geometry and Graphics) and from 2010 to 2012 he was the 
president of SUGIG (Serbian Society for Geometry and Graphics). He is a member of APROGED, ACM and ACM SIGGRAPH.

PAIS, TERESA
Born in Alcantarilha, Silves, Algarve, Portugal. Graduated in Architecture from the Faculty of Sciences and Technology,
University of Coimbra. Master in Drawing Practices and Theories by the Faculty of Fine Arts, University of Porto. PhD in the 
specialty of Plastic Expression and Architecture at the University of Coimbra, with the thesis "Contour drawing in the learning 
process of observing drawing". Assistant Professor of Drawing and Geometry in the Department of Architecture of the Faculty 
of Sciences and Technology, University of Coimbra. Author of several articles on the teaching of Drawing in the training of the 
architect.

PASTERNAK, ELENA
Elena Pasternak is a Professor at Department of Mechanical Engineering, Faculty of Engineering. Elena graduated in 1991 with 
academic distinction from Dnepropetrovsk State University, Department of Theoretical and Applied Mechanics. In 2001 she 
has obtained PhD in Geomechanics of Solids from The University of Western Australia. In 2002 she joined the Department of 
Civil Engineering of the University of Western Australia and then moved School of Mathematics and Statistics. Elena’s areas of 
expertise include topological interlocking, mechanics of generalized continua, wave propagation, fracture mechanics and the 
mechanics of solids.

PIEPEREIT, RAUL
Raul Piepereit is a doctoral student at Technical University of Berlin and a research assistant at Beuth University of Applied
Sciences Berlin as well as University of Applied Sciences Stuttgart. His research is focused on the automated processing of virtual 
city mod-els for flow simulations. He studied mathematics at Beuth University of Applied Sciences and got his Master’s degree in 
Mathematik – Computational Engineering in 2014.

POLTHIER, KONRAD
Konrad Polthier is full professor of mathematics at Freie Universität Berlin since 2005. His research focuses on discrete differential 
geometry, applied geometry, geometry processing, and mathematical visualization.

PRIES, MARGITTA
Margitta Pries studied mathematics at TU Dresden and received her doctorate in 1991. Afterwards, she has worked as a software 
developer, project engineer and IT consultant in the CAD and CAM environment for several years. Margitta Pries has been a
professor at Beuth University of Applied Sciences Berlin since 2003. There she teaches the courses "Mathematical Methods of 
CAD" and "Geometric Modelling in CAD" and others.
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ROELOFS, RINUS
After studying mathematics for a couple of years (applied mathematics at the University of Twente, Enschede), I decided to switch 
to the school of arts. In 1983, I started my career as a sculptor. Inspired by the works of M.C. Escher and Leonardo da Vinci, my 
works became more and more some kind of expression of my mathematical ideas. The main subject of my art is my fascination 
about mathematics - to be more precise: my fascination about mathematical structures. Mathematical structures can be found all 
around us. We can see them everywhere in our daily live. The use of these structures as visual decoration is so common, that we 
don’t even see this as mathematics. But studying the properties of these structures and, especially, the relation between different 
structures can bring up questions. Questions that can be the start of interesting artistic explorations. Artistic explorations of this 
kind mostly lead to intriguing designs of sculptural objects, which are then made in all kind of materials, like paper, wood, metal, 
acrylic, etc. It all starts with amazement, trying to understand what you see. Solving those questions often leads to new ideas, new 
designs. Since I use the computer as my main sketchbook, these ideas come to reality, first, as a picture on the screen. From there, 
I can decide what the next step towards physical realization has to be. A rendered picture, an animation or a 3D physical model 
made by the use of CNC-milling, laser cutting or rapid prototyping. Many techniques can be used nowadays, as well as many
different materials. But it is all based on my fascination about mathematical structures

REITEBUCH, ULRICH
Ulrich Reitebuch has a diploma in mathematics from Technische Universität Berlin. He works at the department of mathematics
and computer science at Freie Universität Berlin and is interested in differential geometry, discrete geometry, tessellations,
symmetries, and connections between mathematics and arts.

SEGERMAN, HENRY
Henry Segerman received his masters in mathematics from the University of Oxford in 2001, and his Ph.D. in mathematics from 
Stanford University in 2007. After post-doctoral positions at the University of Texas at Austin and the University of Melbourne, 
he joined the faculty at Oklahoma State University in 2013, where he is now an Associate Professor. His research interests are in 
three-dimensional geometry and topology, working mostly on triangulations of three-manifolds, and in mathematical art and 
visualization. In visualization, he works mostly in the medium of 3D printing, with other interests in spherical video, virtual, and 
augmented reality. He is the author of “Visualizing Mathematics with 3D Printing”, a popular mathematics book published by 
Johns Hopkins University Press in July 2016.

SHUVALOVA, SVETLANA
PhD in Pedagogic sciences, the associate professor, the Head of the Department of Descriptive Geometry and Engineering
Graphics of the Faculty of Architecture, Saint Petersburg State University of Architecture and Civil Engineering (SPbGASU), 
http://www.spbgasu.ru/Universitet/Vuz_v_licah_2/nameШ/id388/. Svetlana Semenovna Shuvalova graduated from St. Peters-
burg state Institute of Technology in 1979. At present she is a PhD in Pedagogic sciences, the associate professor, the head of the 
department of descriptive geometry and engineering graphics of St. Petersburg state University of architecture and civil engineer-
ing. The sphere of scientific and professional interests includes: creation of perspective projections, improving methods of teach-
ing the discipline "descriptive geometry" for students of architectural and construction specialties; studying the basics of users’ 
perception of the architectural environment. Permanent participant of the international scientific conferences.
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SOUSA, JOSÉ PEDRO
Jose Pedro Sousa is an Assistant Professor at FAUP (Faculty of Architecture, University of Porto) where he founded and
coordinates the DFL (Digital Fabrication Laboratory) research group. His research interests are related with computational
design, digital fabrication, robotics, digital culture and material innovation in architecture.

STASI, GIANLUCA
Graduated in Architecture from the Università la Sapienza de Roma (2005), and was awarded his Ph.D. from the Universidad de 
Sevilla (2018). One of the main axes of his research is the relation between geodesic geometry and community empowerment, 
and knowledge and technology transfer. In his professional life he has supported, contributed to, and developed collaborative, 
participatory, self-construction and low-tech initiatives and processes in various parts of the world. These initiatives, always in 
collaboration with local communities, activated long lasting social processes that have been recognized at the institutional level, 
as with the Curry Stone Design Prize, and, more importantly, by the communities they serve.

TEIXEIRA, SAMANTA ALINE
Samanta Aline Teixeira is Ph.D. student in industrial design from São Paulo State University UNESP. Master's degree from the 
same university in 2017. Origami researcher since 2011, with Scientific Initiation. Current research area: Origami design applied 
to medical instruments.

TORELLÓ, JOAN CARLES OLIVER
PhD in Art History with a thesis entitled 'Photography and Artistic Thought in the Work of Juan José Gómez Molina (1943-2007)'. 
Professor of the Department of Historical Sciences and Theory of Arts of the University of the Balearic Islands. Member of the 
research group in Audiovisual Heritage, Mass-media and Illustration. He researches in the field of the history of photography 
in Spain and with the relationship between art and photography. Among the latest publications, we can quote: 'The Image of 
the Crucified in Salvador Dalí, José María Sert and Juan de la Cruz: Hypothesis of Realization of the Drawing of the Monastery 
of the Encarnación de Ávila' (Locus Amoenus, 2016); 'Relation of the Work of the Painter Antonio López and Photography.'
(Art, Individual and Society, 2015) or the book chapter 'Optical Instrumentation and Scientific Image of Nature '(Cátedra, 2016).

ULIVIERI, DENISE
Denise Ulivieri is a History of Architecture university researcher at the University of Pisa, Department of Knowledge Civilization
and Forms, where she teaches principles of architecture history and urban design, vernacular architecture and history of
contemporary architecture. She is scientific coordinator of several research projects on historical seismic knowledge and
technology in Tuscany. She collaborates with the European University Centre for Cultural Heritage, Ravello. Since 2015 she has 
been a member of ICOMOS Italia. She collaborates with Detroit University’s Mercy School of Architecture. She is editor-in-chief 
of the academic book series Quaderni di ecostoria published by Pisa University Press.

VASILJEVIĆ, IVANA
Ph.D. student of the Chair for Computer Graphics of Department of Fundamentals Sciences at the Faculty of Technical Sciences, 
University of Novi Sad. She received her B.Sc. and M.Sc. degree in Computer Graphics from the Faculty of Technical Science, 
University of Novi Sad, in 2016 and 2018, respectively. Research interests are: computer graphics, stereoscopic, virtual reality, 
simulations, visual effects, computer animation, visualization.
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VERMISSO, EMMANOUIL
Emmanouil Vermisso is an Associate Professor of Architecture at Florida Atlantic University focusing on Design Computation.
He holds degrees from the University of Westminster and Syracuse University. He has practiced in several architectural 
firms including Foster+Partners, AHMM and Porphyrios Associates. He is interested in analogue computation, architectural
Organicism, and technology-driven design protocols which consider bottom-up thinking. His work has examined aspects 
of digital fabrication, analogue computational formfinding, responsive prototypes and self-organization in urban design
methodologies. It has been published in venues including the International Journal of Architectural Computing, ACADIA, CAAD 
Futures, etc. and received recognition from ACSA, NCARB and AIA.

VIANA, VERA
Currently writing her Ph.D. thesis on polyhedra and solid tessellations at Trás-os-Montes and Alto Douro’s University, Vera Viana 
studies polyhedral geometry and the relationships between architecture and mathematics as integrated researcher at the Centre 
for Studies in Architecture and Urbanism of the Faculty of Architecture of Porto’s University.
Descriptive Geometry’s Teacher, Director of Aproged (Portuguese Geometry and Drawing Teachers’ Association), Viana has 
been engaged, since 2002, on the production of educational resources with dynamic geometry, three-dimensional modelling and 
algorithmic modelling software. having authored papers and presentations on the subject.

VICARIO, PEDRO MIGUEL JIMÉNEZ
Pedro Miguel Jiménez Vicario studied architecture at the University of Granada and obtained his PhD in the subject at the
Technical University of Cartagena (UPCT). He is a member of the Department of Architecture and Building Technology, and 
teaches Graphic Thinking and Formal Analysis. He belongs to the GRAMMAR (Graphic Analysis and Methodologies for
Architectural Research) R+D research group. His research also focuses on the study of Modern Architecture, as well as Generative 
and Parametric Design. He has published many papers in a wide range of journals and at international conferences. In addition, 
he has been awarded several prizes and distinctions, including the Iberian Prize for Traditional Architectural Research in 2016.

VUJANOVIĆ, MILOŠ
PhD., visual artist, born in 1965. year in Podgorica, Montenegro. Graduated, master and doctorate at the Academy of Arts in Novi 
Sad. He won several awards for art work, illustrations, and pedagogical work. He's a full-time professor at the same Academy. 
He started exhibiting in 1989, and since then has exhibited at one hundred collective and individual exhibitions at home and 
abroad. He experimented in various disciplines of the visual arts. Participated in making of several short films, video works and
animations.

WEISS, GÜNTER
Günter Weiss is a retired professor for Geometry with former employments at the University of Technology Vienna, Austria, and 
Dresden University of Technology, Germany. He is interested in classical geometries and education. For information about his 
publications see http://www.math.tu-dresden.de/geo/weiss/index.html.

XAVIER, JOÃO PEDRO
João Pedro Xavier is an architect and associate professor at FAUP, where he received his degree in 1985, and his Pd.D. in 2005. 
Worked in Álvaro Siza's office from 1986 to 1999. At the same time, established his own practice as an architect. Member of 
CEAU’s research teams – Architecture: Theory, Project, History – and – Digital Fabrication Laboratory. Correspondent editor of 
the “Nexus Network Journal” and member of the executive board of “Resdomus”. Currently, FAUP’s Dean.
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YAMADA, THAÍS REGINA UENO
Thaís Regina Ueno Yamada is PhD in industrial design from São Paulo State University UNESP. Master's degree from the same 
university in 2003. Assistant Professor of São Paulo State University UNESP. Current research area: Graphic expression and
applications of origami design techniques.

YOSHINO, TAKASHI
Professor of the department of mechanical engineering, Toyo University, Japan. Main interests include geometrical aspects of 
skeletal structures of marine plankton, patterns on curved surfaces, and hyperspace.
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