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PREFACE

Plane curves offer a rich and to some extent unexplored field of study which may be
approached from a quite elementary level. Anyone who can draw a circle with
a given centre and a given radius can draw a cardioid or a limagon. Anyone who
can use a set square can draw a parabola or a strophoid. Anyone who knows a few
of the simpler propositions of Euclid can deduce a number of properties of these
beautiful and fascinating curves.

In school they may be used to instruct and entertain classes at all levels. In a class
of mixed ability some will pursue the theory while others continue with the drawing.

Teachers may use the book in a variety of ways, but it has been written also for
the individual reader. It is hoped that it will find a place in school libraries, and
will be used too by sixth-form pupils, whether on the arts or the science side, who
have time for some leisurely work off the line of their main studies, time perhaps to
recapture some of the delight in mathematics for its own sake that nowadays so
rarely survives the pressure of examination syllabuses and the demands of science
and industry.

The approach is by pure geometry, starting in each case with methods of drawing
the curve. In this way an appreciation of the shape of the curve is acquired and
a foundation laid for a simple geometrical treatment. There may be some readers
who will go no further, and even these will have done more than pass their time
pleasantly; but others will find it interesting to pursue the geometrical development
atleast to the point at which one or other of the equations of the curve is established.
Those who have a knowledge of the calculus and coordinate geometry may prefer
to leave the text at this point and find their own way, using as a guide the summary
of results which will be found at the end of each chapter of Part I and some chapters
of Part II.

In Part II the reader is encouraged to explore further for himself, using whatever
resources are available to him. While some individual curves are briefly discussed,
this part of the book is mainly concerned with methods by which new curves can be
found. Those whose delight is in the drawing will find much to occupy them here;
but deduction can often contribute both to the shaping of a curve and to a discovery
of its properties.

My particular thanks are due to Mr A. Prag, mathematics master and Librarian
at Westminster School, who has written the Historical Introduction and most of
the shorter historical notes, a scholarly contribution without which the book
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would have been sadly incomplete. I am grateful also to my colleague at Felsted
Mr P. Gant, who has read the manuscript in detail and has offered many helpful
criticisms and suggestions; to Mr Alan Breese, who made the drawings for the
full-page diagrams; and to Dr A. M. Winchester, whose photograph of the Pearly
Nautilus fossil appears as the frontispiece. Finally, I express my gratitude to the
Syndics and Staff of the Cambridge University Press: how much the book owes to
them in its planning and production the reader can now judge.

FELSTED E.H. L.
August 1960



HISTORICAL INTRODUCTION

Men were fascinated by curves and curved shapes long before they regarded them
as mathematical objects. For evidence one has only to look at the ornaments in the
form of waves and spirals on prehistoric pottery, or the magnificent systems of folds
in the drapery of Greek or Gothic statues. It was the Greek geometers who began
to study geometrically defined curves as, for instance, the contour of the intersection
of a plane with a cone, or the locus of points reached one by one through a geo-
metrical construction. The straight line and the circle could be drawn with very
primitive instruments in one continuous movement, and so they were distinguished
as ‘plane’ loci from the ‘solid’ conic sections. All other curves were loci lineares,
i.e. just ‘lines’, ‘curves’. Some curves were generated by the movement of mecha-
nical linkages, or at least were imagined to be so generated : the spirals of Archimedes
were of that type. A classification into ‘geometrical’ and ‘mechanical’ curves
(which does not quite correspond to the modern use of those terms) became fixed
when analytical geometry, in the seventeenth century, made it possible to dis-
tinguish with precision what we should now (following Leibniz) call algebraic and
transcendental curves.

In his search for the true shape of a planetary orbit Kepler tried a variety of
curves before he found that the ellipse gave the best fit. In the old Ptolemaic system
the planets were supposed to describe paths which could be constructed by means
of epicycles (i.e. by circles carried on other circles or spheres). Kepler altogether
enjoyed playing with curves and invented a great number of names (usually those of
some sort of fruit) for the solids of revolution generated by curves rotating about
various axes.

When Cavalieri tried to explain his method of integration (Cavalieri’s Principle)
he was careful to use a really general type of curve, but he lacked the analytical
method of description; later in the seventeenth century, Gregory and Barrow gave
the rules of the calculus (as we should call it) in geometrical form by referring to
simple monotone arcs. Thus already the individual curves were beginning to be
lost in more general theory.

A powerful device was the creation of a new curve by the transformation of
another, as for instance, a curve formed by drawing ordinates equal to the lengths
of the subtangents of a given one. A simpler example was the drawing of a conchoid
r = f(0)+c for a given curve r = f(0): then, if the tangent to the given curve were
known, the tangent to the conchoid could immediately be constructed. Problems

[ ix ]
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in optics led to caustics, i.e. envelopes of pencils of rays. But the greatest influence
in the study of curves was, of course, the invention of the calculus, which not only
secured the solution of problems on gradients, areas, and lengths of arcs, but unified
the whole field of research. A great variety of mechanical problems could then be
precisely formulated, as, for instance, to find the curve of ‘quickest descent’, the
brachistochrone.

But the interest had shifted from the geometrical origin of the concept ‘curve’ to
the analytical aspect: it was as a diagram of a ‘function’ that the curve appeared in
the text-book, and the individuality of many famous members of the family was lost.



NOTATION

The following notation will be used, more particularly in the summary of
results at the end of each chapter:

(r, 0) are polar coordinates.

t is a parameter for the parametric equations of a curve.

¢ = angle between radius vector and tangent.

iy = angle between initial line (or x-axis) and tangent.
s = arc-length, measured usually from 6 = O or ¢t = 0.
p = perpendicular distance from origin to tangent.

p = radius of curvature.

A = area enclosed by a curve.

L = total length of a closed curve.

The letters P, P’ will be used to name points on the curve which is being
drawn; Q, Q' for points on a subsidiary line or curve; and g for a point
which will eventually move towards and coincide with Q.

For the drawing of the curves, suitable dimensions will be suggested for
each of the following sizes of paper:

Size 1 9in. by 7in. 23 cm. by 18 cm.
Size 2 13 in. by 8 in. 33 cm. by 20 cm.
Size 3 15in. by I1 in. 38 cm. by 28 cm.

When it is necessary to specify which way up the paper is to be used, the
suffixes P, for the ‘portrait’ (i.e. upright) position, or L, for the ‘land-
scape’ position, will be added. Thus ‘Paper 1.’ means ‘Size 1, in the
portrait position’.

Lines drawn across the paper from left to right will sometimes be
referred to as ‘horizontal’ and lines drawn up the paper as ‘vertical’.

* An asterisk will be used to mark the more difficult sections and exercises.

** A double asterisk will indicate work which, though not necessarily
difficult, demands knowledge beyond the syllabuses of O-level ‘Addi-
tional Mathematics’.

[xi]
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SPECIAL CURVES






1
THE PARABOLA

To Draw a Parabola
Draw a fixed line AY and mark a fixed point S. Place a set square UQV (right-
angled at Q) with the vertex Q on 4Y and the side QU passing through S (Fig. 2).
Draw the line QV. When this has been done in a large number of positions, the
parabola can be drawn frechand, touching each of the lines so drawn. The curve is
said to be the envelope of the variable line QV (Fig. 1).

Y 1%

Fig. 2

Suitable Dimensions
With AY near to and parallel to the left-hand edge of the paper, the distance of
S from AY should be approximately as follows:

Paper: 1, 0'8in. or 2cm,
2p lin. 3 cm.
3 1-5in. 4cm.

A second curve may be drawn on the same paper with the distance halved.

[3]

Fig. 1. The parabola and its evolute
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Geometrical Properties

In Fig. 3, SA is drawn perpendicular to 4Y. The curve is symmetrical about the
axis AS and A is called the vertex. QP, gp are two positions of the variable line

Fig. 3
M P
|
I
I
|
l Q0
I
l
|
|
T Zz A \ Y N
Fig. 4

(i.e. two tangents to the curve), intersecting at P’. SP’ is joined. Then the points
S, Q, g, P’ are concyclic and angle 40S = anglegP’S. P’ is not itself a point on
the curve, but, the nearer together the two tangents are, the nearer to the curve
will it be. Now imagine that g moves closer to Q. P’ will move towards P and

[4]



THE PARABOLA
angle gP’S will become angle QPS. Thus, in the limit, angle AQS = angle QPS.
The point P is shown again in Fig. 4.
Focus and Directrix Property
It is seen from Fig. 4 that triangles SAQ, SQP are similar; hence
angle ASQ = angle QSP.

If PQ is produced to meet the axis at 7, triangles SQT, SQP are congruent.
Therefore SP = ST. If the rhombus PSTM is completed, and MZ is drawn
perpendicular to ST, then SQ = QM and SA = AZ. It follows that Z is a fixed

Directrix

\ .;‘ (focus)

Fig. 5

point and MZ a fixed line. Moreover SP = PM. The parabola can thus be defined
as the locus of a point P whose distance from a fixed point S (the focus) is equal to
its distance PM from a fixed line (the directrix). This is shown in Fig. 5.

Cartesian Equation of the Parabola
If PN is the perpendicular from P to the axis (Fig. 4), PN = 2QA.
PN? = 40QA% = 4AS. AT = 44S.AN.

If AS and AQ are chosen as axes of coordinates of x and y respectively, and if P
is the point (x, y), and AS = q, then y* = 4ax. This is the equation of the parabola.

Polar Equation of the Parabola
If,in Fig. 4, S4 = a, SP = rand angle NSP = 0,then SP = MP = ZN = ZS+SN.
Therefore r = 2a+rcosf, and r(1 —cosf) = 2a, or 2ajr = 1 —cos6. This is the

[5]
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polar equation of the parabola, referred to S as pole and SN as initial line. The
equation 2a/r = 1+cos6 gives the same curve, turned through two right angles,
since cos(180°+¢) = —cosd.

Further Properties

The following may be proved as exercises:

1. If MP is produced to M’, SP and PM’ make equal angles with the curve
(i.e. with the tangent to the curve at P).

This is the reflecting property of the parabola. If a mirror is made in the
form of a paraboloid (i.e. the surface formed by rotating a parabola about its
axis), rays from the focus S would be reflected into rays parallel to the axis.
A searchlight beam is produced in this way. For the same reason rays coming in,
parallel to the axis, would be focused at S. This is the way in which a reflecting
telescope produces an accurate image of a star, free from spherical or chromatic
aberration.

2. If PG (the normal) is drawn through P at right angles to the tangent PT,
meeting the axis at G, NG = 2a and is therefore constant. This gives a convenient
method for drawing the normal at any point of the curve.

3. If PT cuts MZ at Y, PSY is a right angle. If PS is produced to meet the
curve again at R, the tangent at R passes through Y. Angle SPY is equal to
half angle RST, and angle SRY is equal to half angle PST; hence RYP is a right
angle. Thus tangents at the ends of a focal chord meet at right angles on the
directrix.

** 4, If a number of parallel chords of a parabola are drawn, their mid-points
lie on a straight line parallel to the axis. This line is called a diameter of the
parabola. The tangent at the point where it meets the curve is parallel to the chords
and the tangents at the ends of any one of the chords meet on the diameter
produced.

Hint: Let PP’ be one of the chords and let PM and P'M’ be the perpendiculars
from P and P’ to the directrix. If K is the mid-point of MM’, KS will be the
radical axis of the two circles whose centres are P and P’ and whose radii are PS
and P'S. KS will thus be at right angles to the parallel chords and K will be a
fixed point.

5. The two tangents from any point to a parabola subtend equal angles at the
focus.

(Hint: If the tangents at P and P’ meet at R, cutting the tangent at the vertex
at Q and Q' respectively, the points S, O, R, Q" are concyclic. Hence angle
SRQ' = angle SQQ’ = angle SPQ.)

[6]
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Further Drawing Exercises

1. Draw any two lines and mark on each a series of points at equal intervals.
(The intervals on the second line need not be equal to those on the first.) Call the
points on the first line 4;, 4,, 43, etc., and those on the second line B,, B,, B, etc.
Join A, By, A, B,, A3B;, etc. The envelope of these lines will be a parabola.

2. Use the above method (i) to draw a parabola to touch four given lines;
(ii) to draw a parabola to touch two given lines at given points.

(Hints: (1) Take two of the given lines as the two fixed lines; let the other given lines
cut them at A4, B, and 4, B,,. (i) Take the two given lines as the two fixed lines; take
the given points as A, and B, the intersection of the given lines being B; and also 4,,.)

3. Draw normals at a large number of points on a parabola. (Use the property
NG = 2a. Itis convenient to mark the distance 2g along one edge of a set square,
measuring from the right-angled corner.) The envelope of the normals drawn to any
curveis called the evolute of that curve. The evolute of the parabolaisa curve called the
semi-cubical parabola (Fig. 1). It will be seen that from any point inside the evolute
three normals can be drawn to the parabola, but from any point outside it only one.

4. Draw a circle cutting a parabola in four points and verify that the chords
joining them in pairs are equally inclined to the axis.

5. Draw a circle cutting a parabola at the vertex and three other points. Verify
that the normals at these three points are concurrent.

6. Given a parabola and two normals, use the last two results to draw a third
normal concurrent with the first two.

7. Verify that the circumcircle of the triangle formed by three tangents to a parabola
passes through the focus; and that the orthocentre of the same triangle lies on the
directrix. (These properties are related to the Simson Line properties of the triangle.)

8. Draw several parabolas with the same vertex and axis, varying the position
of S. Then draw a number of lines radiating from the vertex. This will illustrate
the fact that all parabolas are geometrically similar: they have the same shape and
vary only in size.

9. The semi-cubical parabola may be drawn as a locus as follows: Draw a fixed
line AB and mark a fixed point O, not on the line. From O draw any pair of lines
OL and OM, at right angles to each other, OL cutting the fixed line at Q. From Q
draw QR perpendicular to 4B, cutting OM at R. From R draw RP perpendicular
to OR, cutting LO produced at P. Then P is a point of the locus.

Suitable dimensions. The fixed line should be near and parallel to a long edge of
the paper. O may be about 2 in., or 6 cm., away from it. If graph paper is used
points can be plotted very quickly by placing a ruler to represent OL and a set
square with two of its sides representing OL and OM.

[7]
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The Parabola: Summary

**Many of the following properties can be conveniently proved by the methods of
the calculus and coordinate geometry, starting from one or other of the equations
listed.

1. The Cartesian equation (origin at vertex) is y* = 4ax.

All parabolas are similar in shape, the constant a determining the size.

The polar equation (pole at focus) is //r = 1 —cos6, where | = 2a.

The pedal equation is p® = ar.

Parametric equations are x = af?, y = 2at.

Y = 180°—-¢, = 36, = cot11.

p = —2a+1} = —(y*+4a%}/4a2
8. The centre of curvature is (2a + 3ar?, —2at3), and the evolute is the semi-cubic

parabola 27ay? = 4(x—2a)3.

9. The area bounded by the curve, the x-axis and the ordinate is $xy (i.e. two-
thirds of the rectangle having the same base and height).

10. s = a[t (1 +®) +log{tr+ /(1 +3)}].

11. The parabola is the section of a right circular cone by a plane making with
the axis of the cone an angle equal to the semi-vertical angle.

12. It is the negative pedal of a straight line.

13. It is the locus of a point in a plane whose distance from a fixed point (the
focus) is equal to its distance from a fixed line (the directrix).

14. Tt is the form assumed by a hanging chain under a uniform horizontal
distribution of load (cf. the catenary, p. 119).

In nos. 15-20, the notation of Fig. 4is used. Sis the focus and ZM the directrix.
SA = AZ = a. Let PT cut MZ at R and let PG be the normal at P, meeting the
axis at G.

15. SQP is a right angle.

16. PQ bisects angle SPM.

17. SP = PM = ST = SG.

18. NG = 2a.

19. PSR is a right angle.

20. If PSP’ is a focal chord, the tangents at P and P’ meet at right angles on
the directrix, at R.

21. From a given point outside the curve two tangents can be drawn and they
subtend equal angles at the focus.

22. Three tangents to a parabola form a triangle whose orthocentre lies on the
directrix and whose circumcircle passes through the focus.

23. From a given point inside the evolute three normals can be drawn to the

[8]
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parabola and their feet lie on a circle through the vertex; but from a point outside
the evolute only one normal can be drawn.

24. The mid-points of a system of parallel chords lie on a straight line parallel
to the axis. This line is called a diameter. The tangent at the point where it meets
the curve is parallel to the chords; and the tangents at the ends of any one of
the chords meet on the diameter produced.

The parabola was first studied by the Greeks as one of the sections of a cone.
The earliest writer to show knowledge of these conic sections was Menaechmus
(fourth century B.C.), a pupil of Plato and Eudoxus. He solved the problem of the
duplication of the cube by drawing two parabolas (or, alternatively, a parabola
and a hyperbola). This problem, to find the side of a cube which would have

LN B 2

Parabola Ellipse Hyperbola
Fig. 6

double the volume of a given cube (in our notation, to solve the equation x® = 2
by a geometrical method), had been reduced to that of finding two geometric
means between two given quantities, i.e. given a and b, find x and y such that
alx = x|y = y/b. The problem is insoluble by ruler-and-compass constructions,
but Menaechmus solved it by finding the intersection of the parabolas x* = ay
and y® = bx. So Menaechmus evidently had some knowledge of these curves.
He called the parabola a ‘section of a right-angled cone’, the ellipse a ‘section
of an acute-angled cone’ and the hyperbola a ‘section of an obtuse-angled cone’.
This indicates that he had obtained the three curves as sections of three different
right circular cones, the section being always at right angles to a generating line of
the cone (Fig. 6).

Euclid wrote four books on conic sections, but they have been lost, perhaps
because they were quickly superseded by the work of Apollonius (third century
B.C.), ‘the great geometer’. It was Apollonius who named the three curves; more-
over he obtained all three from the same cone, by taking sections at different
inclinations.

The origin of the names is as follows: In Fig. 7, ¥ is the mid-point of a chord

[9]
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QQ’ and PV is a diameter (i.e. a straight line through the mid-points of a system of
parallel chords). Apollonius drew a straight line PL, in the plane of the section, at
right angles to PV, its length depending on the position of the section in relation to
the cone. He then proved that, for the parabola, QV?* = PL.PV; equivalent, in
modern notation, to y* = 4ax, where x and y

are oblique coordinates. The name parabola L
signifies ‘equality’, ‘an exact comparison’. The
corresponding properties for the other two curves
were y? = 4ax—px® and y? = 4ax+px?; so he
called one the ellipse (‘falling short’) and the
other the hyperbola (‘throwing beyond’). These
names may be compared with the corresponding
literary terms, parable, ellipsis and hyperbole.

Apollonius did not give the focus-directrix
properties of the curves. These were first treated
by Pappus of Alexandria (about A.D. 300).

The history of the conic sections begins again
in the seventeenth century. The invention of
coordinate geometry by Descartes put them in
an altogether new light as curves of the second
degree. His work on them, however, was in-
complete and deliberately obscure. Wallis was the
first to treat them systematically in this manner
‘considered as plain Figures, exempted out of the
Cone’.1

A few years earlier, the young Pascal had
treated them as projections of the circle, fore-
shadowing the projective geometry which was to Fig. 7
develop 200 years later. About the same time,
too, Galileo showed that the path of a projectile thrown obliquely was parabolic,
a fundamental result in the science of ballistics.

The reflecting telescope was suggested by James Gregory in 1663 and the first
one was made by Newton in 1668. Parallel rays are brought to a focus by a
parabolic mirror, the focal length, in large telescopes, being anything up to 40 ft.
The paraboloid form is also used in reflectors for searchlights and for radar
receivers.

1 ‘Equality’ as shown by ‘application’; rapafdAAw had longago taken on the derived meaning

of comparo.
1 So described in Phil. Trans. R. Soc. (1695). Wallis’s work was published in 1655.

[10]
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The cables of a suspension bridge take the form of parabolas; but, as with the
telescope mirrors, they show a relatively small arc, the height of the piers being
usually about a tenth of the span.

The Semi-cubical Parabola: Summary

k%

1.

9.
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Parametric equations are x = 3ar?, y = 2at®.

The corresponding Cartesian equation is 27ay® = 4x3,

tany = .

The polar equation is r = csin?0sec?0.

s = 2a{(1+2) -1}

The intrinsic equation is s = 2a(sec®yr —1).

p = 6at(l +123%, = 6asecdyrtany.

The centre of curvature is at (— 3ar?— 6at?, 8ar®+ 6at).

The area bounded by the curve, the x-axis and the ordinate is 2xy (i.. two-

fifths of the rectangle having the same base and height).

The semi-cubic parabola became famous in its own right because it was the first
algebraic curve to be rectified. William Neile devised a method (1659) for finding
the length of an arc of this curve, and, in an appendix to the Latin edition of
Descartes’ Geometry, Heuraet used it as the most convenient example for his more
general construction. Before this only transcendental curves (as, for example, the
cycloid or the logarithmic spiral) had been rectified. Indeed the simplest curves
seemed to defy all attempts at rectification: thus the common parabola led to
logarithmic functions, while the ellipse required new functions altogether. But the
discovery of Neile and Heuraet was based on the algebraic character of the ‘semi-
cubic’ curve, not on its property as an evolute of the common parabola.

[11]
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THE ELLIPSE

To Draw an Ellipse

Draw a circle, centre C, and a diameter ACA’ (Fig. 9). Mark any point .S on A4".
Using a set square, draw from any point Q on the circle a chord QR at right angles
to SQ. Repeat for numerous positions of Q, keeping S fixed. The envelope of QR
will be an ellipse.

Suitable Dimensions
Make the circle as large as possible and make CS at least 2CA.

Fig. 9

Eccentricity
AA' is called the major axis of the ellipse and a chord BCB’, drawn through C at
right angles to A4’ is the minor axis. The nearer S is to A, the narrower will be

[13]
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the ellipse; i.e. the shorter will be the minor compared with the major axis. Thus
ellipses can vary in shape as well as in size (unlike parabolas, which are all similar
in shape: see p. 7, Ex. 8). The variation in shape is measured by the ratio CS: CA4,
which is called the eccentricity. 1t is less than 1. The length of CA (the major semi-
axis) is usually denoted by a and the eccentricity by e. Thus C4 = aand CS = qe.

Geometrical Properties
If OS produced meets the circle again at R, RR’ is a diameter; and if the rectangle
R'QRQ’ is completed, Q" will lie on the circle. If RQ’ cuts 44" at §’, it is seen by
the symmetry of the figure that CS” = CS, and that S’ is thus a fixed point. S and
S’ are called the foci of the ellipse.

4\

Fig. 10

Let Q, g be points on the circle (Fig. 10), and let the chord g¢Q be produced to U'.
If the lines drawn through Q and g atright anglesto SQ and Sgrespectively meet at P/,
then the points S, Q, g, P’ are concyclic, and angle SQU’ = angle SP’q. If now g ap-
proaches Q, QU’ becomes in the limit the tangent to the circle at 0, and P’ becomes
a point on the ellipse. It follows that, in Fig. 9, if UQW and VRW are tangents to
the circle, angle SQU = angle SPQ; and similarly angle S’RV = angle S'PR.
But the tangents WQ and WR make equal angles with the chord QR; from which
it follows that angle SQU = angle SRV, and hence angle SPQ = angle S'PR.
This proves the reflecting property of the ellipse, that rays emanating from one
focus would be reflected by the curve to the other focus.

If SQ is produced to H so that SQ = QH (Fig. 11), H is said to be the image
of S'in QR. The triangles PQS, PQH are congruent and HPS’ is a straight line.
Moreover, SP+S'P = S'H, and, since QQ’'S’H is a parallelogram, it follows that
SP+S'P = QQ' = AA’ = 2a. Thus the sum of the focal distances of a point on
the ellipse is constant. (This explains the ‘string method’ of drawing an ellipse.)

[14]
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Further Properties

The following may be proved as exercises:

1. The product SQ.S'R is constant.

2. If the normal at P meets the major axis at G, SG = e.SP. (Hint: Use the
theorem that the bisector of an angle of a triangle divides the opposite side in the
ratio of the other two.)

3. If the minor semi-axis CB (Fig. 13) is of length b, use triangle CSB to prove
that 5% = a*(1 —é€?).

H

Fig. 11

4. The product SQO.S'R = b2
* S IfSP=r, SP=1r', SQ =p and S'R = p’, prove that b*/p? = 2a/r—1.
(Hint: Use similar triangles SPQ, S'PR, as well as the connections between r, r/,
p, p’ already proved.) This result is called the pedal equation of the ellipse, and is
useful in dealing with planetary orbits (see p. 22).

Focus and Directrix Property

* Complete the rectangle SQPK (Fig. 12). Draw PN perpendicular to 44" and let
CN be x. Then S, O, P, N, K lie on a circle, and, since angle UQS = angle QPS,

[15]
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QU is a tangent to that circle, as well as to the circle on 44’ as diameter. Therefore
the diameter QK passes through C. By intersecting chords,
CK.CQ = CS.CN,
ie. CK.a = ae.x,
CK = ex and SP = QK = a+ex.

Fig. 12

This last result may be written SP = e(aje+x), from which it appears that, if
a line is drawn at right angles to 44’ through a point Z on CA4 produced, where
CZ = ale, and PM is drawn perpendicular to it, then SP = e.PM. The ellipse
could thus be defined as the locus of a point whose distance from a fixed point is
a fixed fraction of its distance from a fixed straight line.

Polar Equation of the Ellipse
* If SP = r and angle A'SP = 0,
r=SP=e.MP =e.(ZC—SC+SN)
= e.(ale—ae+rcosb)
= a(l —e®)+recosd.
r(1—ecosf) = a(l —e?).

[16]
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By putting 6 equal to 90°, we obtain SL = a(l —e?), where SL is the semi-latus-
rectum, or half-width of the curve at S, measured at right angles to the major axis.
SL is denoted by /, and the polar equation of the ellipse may then be written
r(l—ecosf) = I, or l[r = 1 —ecosd.

The equation //r = 1+ ecos0 represents the same curve turned about S through
two right angles.

Cartesian Equation of the Ellipse
* In Fig. 13, SP = a+ex and SN = ae+x.
‘. PN? = SP?—SN? = (a+ex)?*— (ae+ x)*
= a*(1 —e?)—x%(1 —é?).

/B
!‘ N
Fig. 13

If PN = y so that (x,y) are the coordinates of P referred to rectangular axes CA’
and CB, then ~ 3?2 _ 1_{2 o x? .ﬁ _
a*(1—e?) a® a® b2 '

The Ellipse and its Auxiliary Circle

* The circle on A4’ as diameter is called the auxiliary circle of the ellipse. If (X, Y)
are coordinates of a point P’ on this circle, then X2+ Y2 = g%, which may be
written X2 y?

aZta =l

If X = x, as in Fig. 14, it is evident by comparison with the equation of the ellipse

that y/b = Y/a. Hence

PN
P'N

_Jy _b
T Y a

LC

N
-~

ek
[
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The ellipse might thus be drawn by reducing all the ordinates of the circle in the
same ratio.

Area of the Ellipse
This can be found by comparing the ellipse with its auxiliary circle. In Fig. 14,
PN|P'N = bJaand, if the ellipse is divided into narrow strips by a series of ordinates
PN, the area of each strip is approximately b/a times that of the corresponding
part of the circle. Thus the area of the whole ellipse is ma® x b/a, i.e. mab.

B
P
A C N A’
Fig. 14

Length of the Ellipse

There is no exact formula for the length of the ellipse in terms of ordinary functions.
This led to the invention of elliptic functions, in terms of which this and other
previously intractable problems could be solved.

An approximate formula given by Ramanujan in 1914 is

m[3(a+b) — J{(a+3b)(3a+b)).

Further Exercises

* 1. Prove that S’P = a—ex. If a line is drawn at right angles to 44’ through a
point Z’ on CA’ produced, where CZ’ = afe, and PM’ is drawn perpendicular to it,
prove that S’P = e.PM’. (S is thus a second focus, with Z’'M the corresponding
directrix.)

[18]
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2. State the locus of the feet of the perpendiculars drawn from the foci of an
ellipse to a variable tangent. (Such a locus is called a pedal curve; this one would
be described as the pedal of the ellipse with respect to its foci.)

3. If, in Fig. 14, a line PEF is drawn parallel to P'C meeting the major axis at E
and the minor axis at F, prove that PF = g and PE = b. (This is the basis for the
trammel method of drawing the ellipse. See Drawing Exercise 3, below.)

4. 1f the normal at P meets the minor axis at G', prove that the points P, S, G’
and S’ are concyclic. (Hint: In the triangles PSG’ and PS'G’, two sides are equal to
two sides, and the angles opposite one pair of sides are equal; hence the angles
opposite the other pair of equal sides are either equal or supplementary.)

Hence find a construction for drawing normals to the ellipse. See p. 20, no. 9.

Further Drawing Exercises

1. Draw an ellipse by the ‘string method’. (Use an endless string and the two
points of a pair of dividers.) Do this again with given major and minor axes.
(Hint: see p. 14.)

2. Draw an ellipse having given semi-axes a and b, as follows: Draw first the
major axis A4’ (= 2a) and a circle on A4’ as diameter (the auxiliary circle). Draw
a series of ordinates QN to this diameter, Q being any point on the circle and ¥
the foot of the perpendicular from Q to A4’. On each of these ordinates mark a
point P such that PN:QN = b:a. Draw a freehand curve through all the points P.
(See p. 17.)

3. The trammel method. It is supposed that the major and minor axes are
drawn. Along the edge of a piece of paper mark points F, E, P (in that order) such
that PF = g and PE = b. Place the paper with F at any point on the minor axis
and FE at a point of the major axis; then P will be at a point of the required ellipse.
(See Ex. 3, above.)

4. Take a circular piece of paper (e.g. a filter paper) and mark a point S on it.
Fold the paper so that the edge of the folded part passes through S. Flatten the
paper again and repeat many times. The envelope of the creases thus formed will
be an ellipse. (In Fig. 11, imagine S’ to be the centre of the piece of paper and
S’H the radius.)

5. Pascal’s Hexagon. Draw an ellipse and mark on it any six points 4, E, C,
F, B, D (in that order). Join them in the order ABCDEF. Mark the intersections
of AB and DE, BC and EF, CD and FA. Notice the connection between these
three intersections.

If the six points are joined in any order to form a hexagon, the intersections of
opposite sides (i.e. the first and fourth sides, the second and fifth, the third and sixth)
will be collinear.

[19]
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6. Brianchon’s Theorem. Draw any six tangents to an ellipse. (This may be
done, using a set square, by the method described on p. 13.) Let these six tangents
(produced if necessary) form a hexagon ABCDEF. Join AD, BE and CF, and
verify that they are concurrent.

7. Given five points so placed that an ellipse might be drawn through them, use
Pascal’s Hexagon to find other points which would lie on the same ellipse.

8. Given five lines so placed that an ellipse could be drawn touching each of them,
use Brianchon’s Theorem to find other lines which would touch the same ellipse.

9. The evolute of the ellipse. A series of normals can be drawn by the method
suggested on p. 19. (With centre at any point on the minor axis draw an arc
through S cutting the ellipse at P and the further part of the minor axis at G’. Then
PG’ is a normal to the ellipse at P.) The envelope of these normals is the evolute,
a four-cusped curve. The two cusps on the major axis are at distances b%/a from the
nearer ends of that axis; and the two on the minor axis are at distance a%/b from
further ends of that one.

10. To draw an approximately elliptical arch with circular arcs. Given the major
axis ACA’ and the minor semi-axis CB, complete the rectangle ACBD and draw
DXZ at right angles to AB, cutting AC at X and BC (produced) at Z (Fig. 8). X and
Z are then centres of curvature for the ellipse at 4 and B respectively, i.e. centres
of the circles that would fit most closely to the desired curve at these points.
(For greater accuracy it may be noted that AX = CB?/CA and BZ = CA?/CB.)
Now find any point Y within the triangle CXZ such that XY+ YZ = BZ—-AX.
(It is best to make XY and YZ equal or nearly equal.) With centre X, draw an arc
from A to meet YX produced at L; with centre Z, an arc from B to meet ZY
produced at M; and with centre Y, an arc from M to L. (This is possible, since
MY = BZ—-YZ = AX+ XY = LY.) Repeat for the other side of the arch.

Suitable dimensions. Draw ACA’ parallel to the top edge of the paper, with B
near the top edge.

CA CB
Paper: 1, 3in. or 8 cm. 1-5in. or 4 cm.
2, 3in. 8cm. 1in. 2:5 cm.
3 Sin. 12cm. 2in, S5cm.

(For the arc of radius BZ a piece of string with a loop at one end may be used.)

The Ellipse: Summary
** 1. The Cartesian equation (origin at centre) is x2/a?+ y?/b? = 1.
2. The polar equation (pole at focus) is //r = 1+ecosf, where [ = a(1 —e?) and
b? = a*(1 —é?).

[20]
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The pedal equation (pole at focus) is b2/p? = 2a/r—1.

Parametric equations are x = acost, y = bsint.

A = mab.

p = (a?sin?t+ b2cos?1)ab.

The evolute is (ax)f + (by)} = (a®—b?)E.

The ellipse is the section of a right circular cone by a plane making with the
axis of the cone an angle greater than the semi-vertical angle.

9. It is the locus of a point in a plane whose distance from a fixed point (the
focus) is e times its distance from a fixed line (the directrix), e being less than 1.

10. Itis the locus of a point in a plane the sum of whose distances from two fixed
points is constant.

11. It is the negative pedal of a circle with respect to a point within it.

12. It is the orthogonal projection of a circle on a plane inclined to its own
plane.

In nos. 13-24, the notation of Figs. 11, 12,13, 14 is used. C4A = a, CB = b,
where 5% = a*(1—e?). CN = x.

13. CS = CS’ = ae.

14. CZ = ale.

15. SP = e.PM.

16. SP =a+ex, S’P = a—ex; SP+S'P = 2a.

17. SL =1 = a(1—¢>.

18. QP is the external bisector of angle SPS".

19. SQP and S'RP are right angles.

20. SQ.S'R = b

21. If PEF, drawn parallel to P'C, meets CA" at E and BC produced at F,
PF = g and PE = b.

22. If the normal at P meets CA at G, SG = e.SP.

23. From a point outside the curve two tangents can be drawn and they sub-
tend equal angles at a focus.

24. If two tangents are at right angles they intersect on a circle, called the
director circle, whose centre is C and whose radius is 1/(a®+ b?).

25. If the tangent at P cuts the directrix at R, PSR is a right angle.

26. Tangents at the ends of a focal chord meet on the corresponding directrix.

27. From a point inside the evolute, four normals can be drawn to the ellipse;
but from a point outside the evolute, only two.

28. The mid-points of a system of parallel chords lie on a straight line through
the centre, called a diameter. The tangents at the ends of the diameter are parallel
to the chords; and the tangents at the ends of any one of the chords meet on the
diameter produced.

Sl O

[21]
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For the many geometrical properties of the ellipse the reader should consult
works on the conic sections.

It has already been mentioned (p. 9) that the ellipse was studied by Menaech-
mus and other ancient Greeks. About 2000 years later, Kepler, working at Prague
with the Danish astronomer Tycho Brahe, was set to study the motion of the planet
Mars. In 1602 he wrote in a letter that he believed the orbit of Mars was oval, and
later he realised that it was elliptical, with the sun at one focus. (It was he who first
introduced the word ‘focus’ for the point in question.) Kepler published his
discovery in 1609. He was unable to account theoretically for the elliptical orbit
or for his other laws of planetary motion and it was left to Newton to prove
(c. 1680) that the elliptical orbit was a consequence of his inverse square law of
gravitation and, conversely, could only occur under such a law.

** (If a planet of mass m is moving with velocity v at distance r from the sun
(mass M), its potential energy, under Newton’s Law, is —Mm/r, and hence, by

conservation of energy, Mm
Imv? — = constant.

If the perpendicular distance from the sun to the tangent to the planet’s path is p,
the conservation of angular momentum gives

pv = constant (A, suppose).

Combining these two equations,
=-;———— = constant,
’

and this is the pedal equation of an ellipse, as shown on p. 15.)

In 1639 Pascal, at the age of 16, discovered the theorem known as Pascal’s
Hexagon (p. 19, Ex. 5), which is true not only for the ellipse, but for other conic
sections.

James Gregory’s design for a reflecting telescope (1663) included a small ellip-
tical mirror, placed just behind the focus of the main parabolic mirror. This was
for reflecting the rays to the eye-piece through a hole in the main mirror.

With the gradual acceptance of the Copernican Theory and the rotation of the
earth, it became natural to think that the earth might be ellipsoidal in shape.
Maclaurin (1698-1746) showed that a homogeneous mass of liquid revolving
uniformly under the action of gravity would take such a form. From 1743 on-
wards more exact measurements became available of the length of a degree of
latitude in different parts of the world. These confirmed the supposition and it is
now known that the earth’s polar diameter is less than its equatorial diameter by
about 26 miles, i.e. by 1 part in 300. This corresponds to an eccentricity of about 5.

[22]
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The eccentricities of the planetary orbits are small, the largest being those of
Mercury (about 1) and Pluto (about }). For Mars the eccentricity is about %
and for the earth about g5. In 1705 Halley suspected that the comet which bears
his name was moving in a very elongated elliptical orbit. This has been confirmed
by the regular reappearance of the comet at intervals of approximately 76 years
and it has been shown that the orbit has an eccentricity of approximately 0-9675.
While the orbits of the planets are nearly circular, those of the majority of comets
are nearly parabolic. A few comets have been observed moving in hyperbolic orbits.

[23]
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THE HYPERBOLA

To Draw a Hyperbola
Draw a circle, centre C, and a diameter ACA’ (Fig. 16). Mark any point S on 4’4
produced. Using a set square, draw from any point Q on the circle a chord QR
at right angles to SQ. Repeat for numerous positions of Q, keeping S fixed. The
envelope of RQ produced will be a hyperbola (Fig. 15).

Suitable Dimensions
The circle should be in the centre of the paper, with 44" ‘horizontal’.

Paper: 1, 1-5in. or 4 cm. 2:51in. or 6-5 cm.
1, 1-5in. 4cm. 2in. Scm.
2p 2in. S cm. 3-5in. 9cm.

2, 2in. 5cm. 2:5in. 6:5cm.
3, 2:5in. 6cm. 4-5in. 11 cm.
3, 2:5in. 6cm. 3-2in. 8 cm.

Symmetry

If SO meets the circle again at R’, R'"CR will be a diameter, and the chord R'Q’

drawn at right angles to SR’ will form with RQ a rectangle RQOR’Q’. The envelope

of this chord is part of the hyperbola and the whole figure is symmetrical about the

centre C. As the hyperbola is by construction symmetrical about the axis 44" it

follows that it is also symmetrical about an axis through C at right angles to 44"
AA’ is called the transverse axis of the hyperbola and the line through C at right

angles to AA’ is called the conjugate axis.

Eccentricity

Like the ellipse, the hyperbola varies in shape according to the position of the
point S (called a focus of the hyperbola). Theratio CS: CA is called the eccentricity
and is denoted by e. If CA = g, then CS = ae. For the hyperbola the eccentricity
is greater than 1, for the ellipse less than 1.

Asymptotes

Let g be a point on the circle near to Q, and let the lines drawn through Q and ¢
at right angles to SQ and Sq respectively meet at P (Fig. 16). Then S, ¢, O and P
are concyclic and, if Qg is produced to W, angle SgW = angle SPQ. If now ¢

[25]
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approaches Q, P becomes in the limit a point on the hyperbola and QW becomes
the tangent at Q to the circle. Angle SQW is then equal to angle SPQ.

Now let Q move along the circle from A4 towards T, the point of contact of the
tangent from S. As it does so, the angle SQW (and hence angle SPQ) diminishes
towards zero, and SQ increases. It follows that the length of QP increases in-
definitely, its direction and position approximating more and more closely to those

Fig. 16

of CT produced. This line CT is called an asympftote of the curve. It is evident by
symmetry that there are two asymptotes, the curve lying close to one or other of
them at all points far distant from the centre (Fig. 19).

The directions of the asymptotes are given by

secACT = CS|CT = aele = e.

If e = /2, the asymptotes are at right angles and thz curve is called a rectangular
hyperbola.

[26]
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Geometrical Properties

By symmetry RQ’ meets the transverse axis at a fixed point S’ (Fig. 17), and this
point could be used as a second focus to construct the curve, in place of S. Let
WQ and WRV be the tangents to the circle at Q and R respectively. It has been
proved that angle SQW = angle SPQ, and similarly it could be shown that

Fig. 17

angle S’RV = angle S’PR. But angles SOQW and S'RV are equal, being comple-
ments of the equal angles of the isosceles triangle WRQ. Therefore angles SPQ
and S"PQ are equal. This proves the reflecting property of the hyperbola, that rays
of light emanating from .S would be reflected by the curve along lines radiating from
the other focus.

If S’P meets QR at H, QH = QS = Q’S’. Hence QHS'Q’ is a parallelogram
and HS' = QQ’ = 2a. It follows that PS'—PS = HS' = 2a. Thus, for a point
on a hyperbola, the difference of the focal distances is constant.

[27]
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Focus and Directrix Property

* Complete the rectangle SQPK and draw PN to meet the axis at right angles
(Fig. 18). Then S, K, P, Q, N lie on a circle and, since angle SQW = angle SPQ,
QW is a tangent to that circle, as well as to the circle on A4’ as diameter. Therefore
CQOK is a straight line.

S N A

Fig. 18

By intersecting chords, CK.CQ = CS.CN. Let CN = x. Then CK.a = ae.x,
CK =ex and SP = QK = ex—a.

This last result may be written SP = e(x —a/e), from which it appears that, if a line
is drawn at right angles to 44’ from a point Z on AC, such that CZ = a/e, and
PM is drawn perpendicular to it, then SP = e.PM. The hyperbola could thus be
defined as the locus of a point whose distance from a fixed point is a fixed multiple
(greater than 1) of its distance from a fixed straight line.

[28]



THE HYPERBOLA
Polar Equation of the Hyperbola
* If SP = r and angle ASP = 0,

r =e.PM = e.(SC-ZC~SN)
= e(ae—alje—rcosb)
= a(e?*—1)—recos0,
r(1+ecosf) = a(e*—-1).
By putting 6 equal to 90° we obtain SL = a(e*—1), where SL is the semi-latus-

rectum, or half-width of the curve at S, measured at right angles to the transverse
axis. If SL is denoted by /, the polar equation of the hyperbola may be written

r(l1+ecosf) =1 or Illr =1+ecosf.

It will be noted that, as ¢ increases from zero, r increases as long as cos@ > —1/e,
increasing without limit as that value is approached. When cosf < —1/e, r is
negative and points are obtained on the further branch of the curve.

The equation //r = 1—ecos® represents the same curve turned about S through

two right angles.

Cartesian Equation of the Hyperbola

* .

PN?% = SP?— SN? = (ex—a)?—(ae—x)?
= x%(e?—1)—a%*e?—1).

If PN = y, so that (x, y) are coordinates of P referred to rectangular axes through C,
then y? X2 X2 2

- @ L o gr=b
where 5% = a%(e?—1).
The length b may be represented by CB in Fig. 19, for it was shown above (p. 26)

that sec ACT = e, and therefore CB?/CA? = tan?ACT = &*—1.

Rectangular Hyperbola
For the rectangular hyperbola tanACT = 1, and e = 4/2. Hence CB = CA4, or
b = a. The Cartesian equation is then x2—)? = a2

Drawing Exercises

1. To draw a hyperbola (second method). Given the asymptotes CX, CY, and
a tangent ST, meeting them at S and T, the curve may be drawn as follows:
On SC produced mark 7" so that CT’' = CT. Draw any circle through S and 77,

[29]
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and a number of chords PCQ. Mark off CP’, equal to CP, along one asymptote
and CQ’, equal to CQ, along the other. Then the envelope of P'Q’" will be the
required hyperbola.

Suitable dimensions. For the asymptotes draw diagonals of the paper. The circle
through S and 7" should have as large a radius as possible. (It is sufficient if about
half the circle is on the paper.)

2. To draw a hyperbola (third method). Given the asymptotes CX, CY, and a
point QO on the curve, draw a line through Q cutting the asymptotes at U, V. On

Fig. 19

this line mark a point P such that PV = UQ (the direction on the line being indi-
cated by the order of the letters). The locus of such points P will be the hyperbola.

3. To draw a hyperbola mechanically. Fix the ends of two strings at the proposed
positions of the foci. Tie the other ends together, arranging the lengths so that their
difference is equal to the desired length of the transverse axis. Thread both strings
through a small ring and place a pencil in the ring. If the ring and pencil are now
moved so that the strings are kept taut the pencil will describe one branch of a
hyperbola.

4. To draw the tangent and normal at any point of a hyperbola. Draw the internal
and external bisectors of angle SPS’. Alternatively, suppose that in Fig. 17, the

[30]



THE HYPERBOLA

tangent at P meets the conjugate axis at 7". Then ST’ = S'T". In triangles PST" and
PS'T’ we also know that angles SPT’ and S'PT"’ are equal, and PT” is common.
Therefore, since angles PST’ and PS'T’ are not equal, they are supplementary.
Therefore the points P, S, T" and S” are concyclic and, if the circle cuts the con-
jugate axis again at G', T'G’ is a diameter and PG’ is the normal to the hyperbola
at P. Hence the following construction:

Let the perpendicular bisector of SP cut the conjugate axis at K. With centre K
and radius KS draw a circle cutting the conjugate axis at 7" and G’, G’ being on the
same side of the transverse axis as P. Then PT" is the tangent and PG’ the normal.

5. To draw the evolute. With any point on the conjugate axis as centre draw a
circle through S, cutting the curve at P and the conjugate axis at G’ (on the same
side of the transverse axis as P). Then PG’ is a normal and the envelope of such lines
is the evolute. This is a curve with two cusps on the transverse axis, pointing
inwards towards the centre, the distances from the cusp-points to the centre being
(a2 +b?)/a.

** 6. Draw a rectangular hyperbola and mark any three points 4, B and C on it.
The orthocentre of triangle ABC will be found to lie on the hyperbola, and the
nine-points circle of the triangle will pass through the centre of the hyperbola.

The Hyperbola: Summary
** 1. The Cartesian equation (using the transverse and conjugate axes of the curve
as axes of coordinates) is x?/a®—)?/b* = 1.
2. The Cartesian equation (using the asymptotes as axes) is xy = c?, where
4c? = a®+ b2
3. The polar equation (pole at focus) is //r = 1+ecos8, where [ = a(e?—1) and
b® = a*(e*—-1).
4. The pedal equation (pole at focus) is b2/p® = 2a/r +1.
5. Parametric equations (using the transverse and conjugate axes as axes of
coordinates) are

x = asecl, y = btanf (not the 6 of the polar equation),
or x = achu, y = bshu (one branch only).

6. Parametric equations (using the asymptotes as axes) are x = cf, y = c/t.
7. Using the parameter 6 of no. 5 above,

p = *(a*tan20+ b2sec20)}/ab.
8. The evolute (using the axes of the curve as axes of coordinates) is
(ax)} —(by)t = (a®+ b1,
[31]
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9. For the rectangular hyperbola, e = 4/2 and b = a. The Cartesian equation, as
in (1) above, 1s x2—y® = a2 With the asymptotes as axes, the Cartesian equation is
xy = c?, where 2¢* = g% and the parametric equations are x = ct, y = c/t. The
polar equation, with the pole at the centre and the transverse axis as initial line, is
récos20 = a®.

10. The hyperbola is a section of a right circular (double) cone by a plane
making with the axis of the cone an angle less than the semi-vertical angle.

11. Tt is the locus of a point in a plane whose distance from a fixed point (the
focus) is e times its distance from a fixed line (the directrix), e being greater than 1.

12. Itis the locus of a point in a plane the difference of whose distances from two
fixed points is constant.

13. Tt is the negative pedal of a circle with respect to a point outside it.

14. Tt is the envelope of a line the product of whose intercepts on two fixed lines,
measured from their point of intersection, is constant.

In nos. 15-26, the notation of Figs. 17, 18 is used. CA4 = a and b% = a%*(e?—-1).
CN = x.

15. CS = CS’ = ae.

16. CZ = ale.

17. SP = e.PM.

18. SP =ex—a, S’P = ex+a; S'’P—SP = 2a.

19. SL =1 = a(e?2-1).

20. QP bisects angle SPS'.

21. SQP and S'RP are right angles.

22. SQ.S'R = b2

23. If the normal at P meets CA produced at G, SG = e.SP.

24. If a straight line cuts the curve, the intercepts on it between the curve and
the asymptotes are equal.

25. From a point between the two branches of the curve two tangents can be
drawn and they subtend equal angles at a focus.

26. If two tangents are at right angles they intersect on a circle, called the
director circle, whose centre is C and whose radius is 4/(a®— b?).

27. If the tangent at P cuts the directrix at R, PSR is a right angle.

28. Tangents at the ends of a focal chord meet on the corresponding directrix.

29. From a point between the two branches of the evolute two normals can be
drawn to the hyperbola; but from a point beyond the evolute four.

30. The mid-points of a system of parallel chords lie on a straight line through
the centre, called a diameter. The tangents at the ends of the diameter are parallel
to the chords; and the tangents at the ends of any one of the chords meet on the
diameter produced.
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31. If a triangle is formed by joining three points on a rectangular hyperbola,
its orthocentre lies on the curve and its nine-points circle passes through the centre
of the curve.

For the many geometrical properties of the hyperbola the reader should consult
works on the conic sections.

It was the rectangular hyperbola that Menaechmus used, and particularly its
asymptote property (xy = ab). The lost works of Aristaeus, on Solid Loci, and
Euclid, on Conics, probably dealt with the general hyperbola, but only a single
branch of it. It was Apollonius who first treated the double-branched curve,
obtaining it as a section of a double cone.

Cassegraine’s design for a reflecting telescope (1672) included a small convex
hyperbolic mirror placed just in front of the focus of the main parabolic mirror.
This was for reflecting the rays to the eye-piece through a small hole in the main
MIrror.

A branch of a hyperbola may often be seen as the edge of the shadow cast on a
wall by a circular lampshade.

The property that the difference of the focal distances is constant has given the
hyperbola an important place in the theory and practice of sound-ranging and of
radar navigation.

3 [33] Le
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THE CARDIOID

To Draw a Cardioid

Draw a circle (to be called the base-circle) and mark a fixed point 4 on it. With
centre at any point Q on the circle, and radius QA, draw another circle. Repeat
for a large number of positions of Q, spread evenly round the base-circle. The
heart-shaped curve which all these circles touch is the cardioid (Fig. 20). The
pointed part at A4 is called a cusp, and A is called the cusp-point.

Suitable dimensions (with A on the left-hand side of the base-circle):

Distance of centre
from left-hand

Radius of base-circle edge of paper
Paper: 1, 1-3in.or 3cm. 3in. or 8cm.

2, 1:5in. 4cm. 3in. 8 cm.

3p 20in. 5cm. 45in. 12cm.

It is best to begin with the point Q on the far side of the base-circle from 4 and
to move it gradually towards A.

Measure the lengths of chords PAP’ of the cardioid, and find where their mid-
points lie. Draw tangents at the ends of one of these chords and notice the angle
at which they intersect. (See Summary, nos. 2, 5.)

Geometrical Properties

If Q and q are the centres of two circles through 4 which meet again at P (Fig. 21),
triangles QAq and QPq are congruent, and P is the image of A in the line Qg
(i.e. Qg is the perpendicular bisector of AP). If ¢ now moves close to and, in the
limit, coincides with Q, Qg becomes the tangent to the base-circle at Q; and P
becomes a point on the cardioid.

It thus appears that the cardioid could be drawn by constructing a series of
image points of 4 in tangents to the base-circle; or on half-scale as the locus of the
foot of the perpendicular from A4 to a tangent to the base-circle. A curve drawn in
this way is called the pedal of the base-curve; thus the cardioid is said to be the
pedal of a circle with respect to a point on its circumference. (See ch. 18, p. 153.)
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If P is a point on the cardioid corresponding to a point Q on the base-circle,
and QQ’is a diameter of the base-circle (Fig. 22), there will be another point P’ of
the cardioid corresponding to Q’.

The following facts may now be proved as exercises:

1. If the radius of the base-circle is a, PP’ = 4a.

2. PQ and P’'Q’ meet at right angles, at a point R on the base-circle.

3. The mid-point M of PP’ is on the base-circle. (Hint: Let PP’ meet the tangent
at O in T and the tangent at Q" in T”; then MT = AT’, by symmetry. Hence find
P'M.)

P

Fig. 21 Fig. 22

4. The tangents to the cardioid at P and P’ are at right angles and the locus of
their intersection is a circle. (Hint: The tangent to the cardioid at P is the same as
the tangent to the circle whose centre is O and whose radius is QP: it is therefore
at right angles to QP. Consider the quadrilateral formed by PQ, P'Q’ and the two

tangents.)

Polar Equation of the Cardioid

From Ex. 3 above, it is seen that another way to construct points on the cardioid
would be to draw chords AM of the base-circle and to produce them to P and P’
so that MP = MP’ = 2a (Fig. 23). A curve drawn in this way is called a conchoid,
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thus the cardioid is the conchoid of a circle with respect to a point on its circum-
ference, with the fixed distance equal to the diameter of the circle. (See ch. 14,p. 127.)

If AP makes an angle 6 with the diameter 4B of the base-circle, AM = 2acos0,
and AP = 2a+2acosf. If the length of AP is called r, then r = 2a(1+cos6). (It
should be noted that, if 6 is given a value 180° more than for P, the point P’ is
obtained.)

Fig. 23

The Cardioid as an Epicycloid

Imagine that, in Fig. 24, the tangent at Q to the base-circle is a mirror; it has
already been seen that P is the image of 4 in such a mirror. The image of the base-
circle would be an equal circle, passing through P and touching the base-circle at Q
(Fig. 24). The arc PQ would be equal to the arc AQ, and it follows that, if this
image circle were rolled round the outside of the base-circle, P would eventually
arrive at 4. Thus P is a point fixed on the circumference of the rolling circle, and
the cardioid is the locus of a point on the circumference of a circle which rolls
round the outside of an equal fixed circle. (This may be illustrated with two coins;
pennies may be used, but half-crowns are better, because of the milled edges.)
A curve formed in this way is called an epicycloid.
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Double Generation
Now consider the circle on PP’ as diameter (Fig. 25). As its centre is at M, it
touches the base-circle at R; and as angle AMR is half angle AOR, its arc P'R is
equal to the arc AR of the base-circle (radius double, angle at centre half). From
this it follows that, if it were rolled on the base-circle, P’ would eventually arrive at
A (and so would P, after another half-turn); thus the cardioid is the locus of a

\‘-—-"/

Fig. 24

point on the circumference of a circle rolling on a fixed circle of half its radius, the
fixed circle being inside the rolling circle.f

Further Drawing Exercises

1. Draw the cardioid as the pedal of a circle with respect to a point on its
circumference. (Use a set square.)

+ Properties of the cardioid are illustrated in a film by T. J. Fletcher of the Sir John Cass
College, London, E.C. 3.
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2. Draw the cardioid as the conchoid of a circle with respect to a point on its
circumference.

3. Draw a cardioid on squared paper and measure its area by counting squares.
Compare the result with the area of the base-circle. (See Summary, no. 11.)

Fig. 25

4. Draw a parabola with the fixed line about 4} in. from the short edge of your
paper and the focus S a further  in. away. If P is any point on the parabola, draw
SP and measure its length (7 in.). On SP mark a point Q such that SQ = 1/rin.
Do this for many positions of SP. The locus of Q is a cardioid. This process is
called inversion; the cardioid is said to be the inverse of the parabola with respect
to its focus.

5. On any cardioid draw three parallel tangents; join their points of contact to
the cusp-point 4 and notice the angles these lines make with each other. (See
Summary, no. 6.)
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6. Draw a chord cutting the cardioid in four points; join each of these points to
A and verify that the sum of their lengths is 4a.

* 7. Draw two unequal lines RO and RO’ intersecting at R so that angle ORO’
is 120°. With centres at O and O’ draw circles intersecting at R. Place a 60° set
square so that the sides of the 60° angle each touch one of these circles (on the
inside of the angle) and mark the position of the vertex of that angle. The locus of
this point, as the position of the set square varies, is a cardioid.

Suitable dimensions : With paper 1p the radii may be 1 in. and 3 in., or 3 cm. and
2 cm., or (with small set squares) 1 in. and % in.; with larger paper, 14 in. and 1 in.
or 5cm. and 3 cm. The side of a small set square can be ‘lengthened’ by placing
a ruler alongside it. The locus will be found to touch the two circles at the points
where OR produced and O’R produced meet them again. Between those points
and the cusp, which is at R, the point of contact of one side is on that side produced,
and a ruler must be placed alongside to obtain the position.

Proof: Let the sides of the set square be AB and AC, touching the circles at P and
Q respectively. Draw OA’ and O’A’ parallel to B4 and CA, to meet at A’. Draw
perpendiculars A'P’ and A’Q’ from A’ to AB and AC, meeting them at P’ and Q'.
Then triangles P’A’Q’ and ORO’ are congruent, and the circle on A4’ as diameter,
which passes through P’ and Q’, is the same size as the fixed circle ORO’A’.
Moreover, angle OA'R is equal to angle P’AA4’, since they subtend equal chords
in equal circles. Therefore RA’A is a straight line, and A’A4 is of constant length.
It follows that A lies on a cardioid.

For a fuller treatment of this problem, see p. 50.

The Cardioid: Summary

** 1. The polar equation is r = 2a(l —cos0). (The change of sign corresponds to
changing 6 into 180°+ 0. The cardioid is thus turned through 180° and is now
placed as in Fig. 26.)

2. The length of any chord through the cusp-point is 44, and the mid-points of
such chords lie on a circle.

3. ¢ = 30.

4. = 30.

5. The tangents at the ends of any chord through the cusp-point are at right
angles.

6. There are three parallel tangents in any given direction and the values of ¢
at their points of contact differ by multiples of 120°.

7. The inverse of a cardioid with respect to its cusp-point is a parabola with its
focus at that point.

8. The pedal equation is r® = 4ap®.
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9. The intrinsic equation is s = 8a(l —cos{y), where 0 < ¢ < 540°.

10. L = 16a.

11. 4 = 6ma®

12. p = %alsin 30|.

13. The cardioid is the conchoid of a circle with respect to a point on its circum-
ference, the fixed distance being equal to the diameter of the circle.

14. Tt is the pedal of a circle with respect to a point on its circumference.

Fig. 26

15. Tt is the epicycloid formed by a point on the circumference of a circle which
rolls with external contact on a fixed circle of the same radius; or which rolls with
internal contact round a fixed circle of half the radius.

16. It is the caustic of a circle with respect to a point on its circumference,
1.¢. if rays emanating from that point are reflected by the circumference when they
meet it again, the envelope of the reflected rays is a cardioid.

(Hint for proof: Suppose that, in Fig. 27, the circle whose centre is O’ rolls round
the outside of the fixed equal circle whose centre is O, the point P tracing a cardioid
whose cusp-point is at 4. Let OO’ meet the fixed circle at Q and the rolling circle
at T. Then P is moving at right angles to QP and PT is, therefore, a tangent to the
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cardioid. Let a circle be drawn with centre O, radius OT, and let AB be produced
to meet it at C. It is now only necessary to prove that a ray CT would be reflected
by the circle at T along TP.)
17. From Fig. 27, parametric equations for P, with O as origin and 0 replaced

by ¢, are X = 2acost—acos2t, y = 2asint-—asin2t.
Y
T
0/
Q
7P
c 9 J
B 0 A X
Fig. 27

(Hint: The gradient of PO’ is 2t. For the x-coordinate, project OO’ and O'P on
to OX; for the y-coordinate, project them on to OY.)
For the point diametrically opposite to P on the rolling circle,

X = 2acost+acos2t, y = 2asint+asin2t.
(The first pair of equations represent a cardioid orientated as in Fig. 26, the second
pair as in Fig. 24.)
18. The evolute is a cardioid with base-circle having the same centre as that of

the original cardioid, but one-third of the radius, the orientation of the evolute
being opposite to that of the original curve.
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(Hint: In Fig. 27, PQ is the normal. If it is produced to R, AQ and QR’ are
equally inclined to OQ. Hence its envelope is the caustic of circle 4 QB with respect
to A. Alternatively, with origin at the centre of the base-circle, a point of the
evolute is given by

X = a+rcost—psiny = tacos2t+%acost;

y = rsint+pcosy = }asin2t+3%asint.)

The name cardioid (‘heart-shaped’) was first used by de Castillon in the Philo-
sophical Transactions of the Royal Society of 1741, but he was not the first to
consider the curve: its length, for instance, had been found by La Hire in 1708.
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THE LIMACON

To Draw a Limacon

Draw a circle and a diameter 4B (= 2a). If Q is the middle point of one edge of
your ruler, place the ruler with Q on the circle, the same edge passing through 4

P

Fig. 29

(Fig. 29). Mark two points P, P’ at a fixed distance k£ on either side of Q, k being
greater than 2q. Repeat this many times. (It is best to begin with Q at B and to
move Q gradually round the circle.) Draw a freehand curve through the marked
points. This curve is the limacon.
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Draw another limagon with k less than 2a.
Suitable dimensions (with A on the left-hand side of the circle):

Distance of centre

from left-hand k k
Radius (@) edge of paper (first value) (second value)
Paper: 1, 1in. 2:5 cm. 2:5in. 7 cm. 3in. 7-5cm. lin.  25cm.
2, lin. 2:5 cm. 3in. 8 cm. 3in. 7-5 cm. 1in. 2-5cm.
3, 1-5in. 4cm. 4 in. 10 cm. 4-5in. 12 cm. 1-5in. 4cm.

Special Cases
When k = 2a, the curve is a Cardioid (see p. 36). When k = a, the curve is the

Trisectrix (Fig. 30).7

Fig. 30

The Trisectrix
This curve can be used for trisecting an angle, as follows: Make an angle BAR
equal to the given angle, with AR equal to the radius a (Fig. 30). Join R to O, the
centre of the circle, cutting the inner loop of the trisectrix at P’. Join AP’. Then
angle BAP' = % of angle BAR.
Proof: Produce AP’ to meet the circle at Q (Fig. 30); then P'Q = a, since P’ is

+ Not the same as the Trisectrix of Maclaurin, r = asec(36), or the Trisectrix of Catalan,
r = asec®(30). See pp. 154, 157.
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one of the points of the trisectrix arising from Q on the circle. Join OQ, and let
angle OAQ be 0. Then

04 = 0Q, .. angle Q = 0 and angle A0Q = 180°—-26;
Q0 = QP', ..angle P’OQ = 90°—10.
Hence angle AOR = 90°—30; but
AO = AR, .. angle OAR = 36.

The same curve can be used for drawing angles of 36° and 72°, and hence for
drawing a regular pentagon. Let the perpendicular bisector of A0 meet the

outer branch at P;. If AP, cuts the base-circle at Q,, O,P; = 0,0. Then, if
angle OAP, = 0,

P4 = P,0, . angle 4P,0 = 180°—26;
0P, = 00, -, angle 40,0 = 360°—40;
04 = 00, s 0 = 360°—40,

0 = 72°

In a similar manner it may be proved that, if the perpendicular bisector meets
the inner branch at P,, angle OAP, = 36°.

Polar Equation of the Limacon

If angle BAQ (Fig. 29) = 0,and AP = r, then AQ = 2acosf, and r = 2acosf +k.
This is the polar equation of the limagon. It is not necessary to give a separate
equation for P’, because that point is obtained when the value of 0 is increased
by 180°.

For the cardioid, r = 2a(cosf+1);

for the trisectrix, r = a(2cosf+1).

The Limacon as a Pedal Curve

Draw a circle of radius k and mark a fixed point at a distance 2a from the centre.
On any tangent to the circle mark the foot of the perpendicular from A. The locus
of such points is a limagon.

Suitable dimensions are as for the first method.

Proof: In Fig. 31, TP and T'P’ are parallel tangents to the circle whose centre is B;
P and P’ are the feet of the perpendiculars from A4, and BQ is parallel to the two

tangents. Then AQ is a chord of a circle on AB as diameter and QP = QP' = k.
Therefore the locus of P and P’ is a limagon.
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The Limacon as an Epitrochoid
* If a circle rolls round the outside of a fixed circle, the locus of a point carried by it,
but not on its circumference, is called an epitrochoid.
In Fig. 32, 4, O, B, Q, P are as before. A circle S, is drawn with centre O and
radius 1k, cutting AB at U and V. Another circle S,, of the same radius, is drawn
with centre O’, where OO’ is equal and parallel to QP. These two circles touch at T.

Fig. 31

Then PQOO’ is a parallelogram and O'P = OQ = OA = a. If PO’ is produced
to meet the circle S, at V",

angle TO'V' = angle P = angle AQO = angle Q40 = angle TOV.

It follows that arc TV’ = arc TV, and circle S, could be rolled round circle S,
until 7’ coincides with V. Thus V' is a point fixed on the circumference of the
rolling circle, and the locus of P is that of a point fixed to the circle S, as it rolls
round circle S;.

It may further be noted that, in Fig. 32, the circle S, is turning momentarily
about the point T (the instantaneous centre). Thus P is moving at right angles to TP.
Moreover, TP = TA. This explains the following method for drawing the limagon.
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Envelope Method for Drawing the Limacon

Let A4 be a fixed point at a distance a from the centre of a base-circle of radius 3k.
With any point 7" on the base-circle as centre, and radius 74, draw a circle. The
envelope of such circles will be the limagon (Fig. 28).

Suitable Dimensions

The values of a and & should be as given for the first method, and the centre of
the circle should be placed in the position stated. The point A4 should be on the
left of the centre. It is recommended that complete circles should be drawn, even
when k < 2a.

Diirer’s Method of Drawing the Limacon

A circle is drawn and the circumference divided into twelve parts, these being
numbered like the hour divisions of a clock-face. Radii are drawn to these twelve
points. From the ends of radii 1, 2, 3, ..., lines are drawn, all the same length,
parallel to the radii 2, 4, 6, ..., respectively. The curve is then drawn through the
ends of these lines. (In Diirer’s diagram, the first “hour’ is subdivided into ten
parts, presumably as an indication that more points may be plotted if desired. This
diagram is reproduced in J. L. Coolidge, The Mathematics of Great Amateurs,
p. 67.)
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A Locus Problem

If a triangle moves so that two of its sides touch respectively two fixed circles, the
locus of the vertex at which those sides meet consists of four limagons.

*  Proof: Let the centres be O and O’ and let one of their intersections be K. Let
the sides 48 and AC of the triangle touch the circles at P and Q respectively. Draw
OA’ and O’A4’ parallel to BA and CA, to meet at A’. Then 4’ moves on a fixed
circle through O and O’. Let the diameter of this circle be 4, and let 44" meet the
circle again at R. Let A’P’ and A’Q’ be the perpendiculars from 4’ to ABand AC
respectively.

Then OR = d sinOA’R and RO’ = d sinRA'O’.
OR _ smOA'R _ sinPAA’ PA PO _ .\
RO’ sinRA'O’  sind’AQ"  A'Q" 0'Q '
Therefore R is a fixed point.
OR _ 04k = sinpraqr = PA _ PO
Moreover - = SINOA'R = sinP'AA" = T4 = A4
Therefore AA’ is of constant length, and the locus of A4 is a limagon.
The limacon has a loop if 44" < d, or OP < OR, i.e. if R is outside the two
circles. This occurs if angle OKO’ > 180° —angle A.
There is also another position of R on the circle 4’00’ such that

OR/RO’ = PO|O’Q.

These two positions correspond to the two distinct cases (i) when both circles touch
the sides of the triangle on the inside (or outside), and (ii) when one touches on the
inside and one on the outside.

Moreover, the figure is symmetrical about OO’. Hence the complete locus
consists of four limagons. Let OKO’ be 0 and let angle BAC be «. Then, if 0 lies
between o and (180° — «), two of these limagons have loops; if @ is greater than each
of those values, all four have loops; and if @ is less than each of those values, none
of them have loops. If € is equal to «, or (180°—«), the corresponding limagon
is a cardioid; and, if 8 = a = 90°, the four limagons reduce to two cardioids.

The Limacon: Summary

** 1. The polar equation is r = k-+2acos6, or (with the direction of the initial line
reversed) r = k—2acosd.
2. Parametric equations (with O as origin and OB as axis of x) are

x = kcost+acos2t, y = ksint+asin2s.
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3. If £ = 2a, the curve is the cardioid; if k = a, it is the trisectrix.
4. Ifk > 2a, A = Ra®+k?» m;
if k = 2a, A = 6ma?;
if k = a, area of inner loop = a*(m—3,/3),
area of space between loops = a*(7+3,/3).

5. The limagon is the conchoid of a circle of radius a with respect to a point on
the circumference, the fixed distance being k.

6. It is the pedal of a circle of radius k£ with respect to a point whose distance
from the centre is 2a.

7. 1t is the inverse of a conic with respect to a focus of the conic; an ellipse for
k > 2a, a parabola for k = a, a hyperbola for k < 2a.

8. It is the epitrochoid of a point fixed at a distance a from the centre of a circle
of radius %k rolling on an equal fixed circle.

Roberval, between 1630 and 1640, developed a method of drawing tangents by
considering a curve as being described by the resultant of two or more simultaneous
movements. One of his examples is the conchoid of a circle, which he calls the
‘limagon’ (i.e. snail) ‘de monsieur Pascal’. This refers to Etienne Pascal, the father
of Blaise Pascal. He was one of Mersenne’s correspondents and the famous geo-
meters of the day used to meet in his house.

The curve had been drawn, as described above, by Diirer, though without the
name. It appears in his Underweysung der Messung, published in 1525.

(For Roberval’s method, see the Mathematical Association Report on The
Teaching of Calculus in Schools, p. 75.)
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THE ASTROID

To Draw an Astroid (First Method)

Draw rectangular axes X'OX, Y'OY; draw, in many positions, a line QR, of fixed
length 4a, having Q on X’OX and R on Y'OY (Fig. 34). The envelope of the line
OR is the astroid.

4a

X’ 0 Q X

YI
Fig. 34

Suitable Dimensions

The axes should intersect in the middle of the paper and the length 4a should be
less than half the width of the paper. It is convenient to use one edge of a set square
for drawing QR, with the length of that edge as 4a.

To Draw an Astroid (Second Method)

Draw axes as before and draw a circle with centre O and radius 24, cutting O X at
D and OX’ at D'. Mark points on this circle at intervals of 5°, starting from D,
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and number them 0, 1, 2, 3, ... (the point D being numbered 0), in anticlockwise
order (Fig. 35). Number every third point again, starting at D’, in clockwise order,
the intervals O to 1, 1 to 2, etc., being now 15° instead of 5°. Join the pairs of points
having the same numbers, continuing until the whole astroid is formed.{

Suitable Dimensions

It is convenient to use a semicircular protractor for marking the intervals, the
radius of the base-circle being just greater than that of the protractor. The width of

Fig. 35

the paper should be at least double the diameter of this circle. (If it is not quite
wide enough the difficulty may be avoided by drawing the axes at 45° to the edges
of the paper.)

Justification of the Second Method

In Fig. 36, angle DOE = o« and angle D'OF = 3a. Find in succession angles FOE,
OFEF and EQO, and hence prove that RQ is of constant length.

t Care is required when the numbers ‘cross over’. The double numbering of the points should
be continued until this has happened twice (i.e. at numbers 9 and 27). In later drawings it may
be found more convenient to use a single numbering of consecutive points from 0 to 71, and to
join points 0 and 36, 1 and 33, 2 and 30, etc.
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(Angle FOE = 180°—4a. Triangle FOE is isosceles, and therefore
angle OEF = 2a.
Angle EQO ="a, from which EQ = EO = ER. Therefore QR = 4a.)

Y

3a e

Fig. 36

Instantaneous Centre of the Line QR 0

Any displacement of a rigid body in a plane
can be effected by means of a rotation about
some point. For if, in Fig. 37, the point of
the body which was at 4 has moved to B, and
the point which was at B has moved to C,
then AB = BC; and if O is the centre of the
circle passing through 4, B and C, triangles
OAB and OBC are congruent and angles
AOB, BOC are equal. Thus a rotation about
O would bring 4 and B to their new positions.
But if 4 and B are in their new positions, 5o is
the whole body.

In a small displacement, such as the move- B
ment of the line QR to a position Q'R’, the Fig. 37
centre of rotation will be at the intersection
of the perpendicular bisectors of QQ’ and RR’ (Fig. 38). The smaller the move-
ment, the more nearly will this point coincide with the point of intersection of the
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perpendiculars drawn to the axes through Q and R. This point is called the
instantaneous centre, because at that instant the movement of the line QR can be
regarded as a rotation about that point.

In Fig. 39, I is the instantaneous
centre of the line QR as Q moves along
OX and R along YO. If IP is drawn at
right angles to RQ, the point of the
moving line which is at P must move at
right angles to P/, thatis, along RQ. Any
other point of the moving line will move
in a different direction. But the point of
contact of RQ with the astroid must
move along RQ. Therefore Pis that point
of contact.

Fig. 38

The Astroid as a Hypocycloid

In the rectangle O QIR (Fig. 39), OI = QR = 4a, so I moves on a circle, centre O,
radius 4a. Let that circle cut OX at 4, and let Of cut RQ at M. Then a circle drawn

Y
R /
2t
M
P
1
0] Q A X
Fig. 39

on M1 as diameter will pass through P, and will touch the larger circle at . More-
over the arc PI of this circle is equal to the arc A7 of the circle on which 7 moves
(forif angle AOI = ¢, angle PMT = 2t and arc PI subtends an angle 4¢ at the centre,
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the radius being % that of the larger circle). Thus the locus of P is that of a point on
the circumference of a circle rolling on the inside of a fixed circle. A curve formed
in this way is called a Aypocycloid.

Double Generation

* Let IP be produced to meet the large circle at I’ (Fig. 40), and let I'O produced meet
OR produced at N. Then angle OII’ = 90°—2¢ and, in the isosceles triangle OIT',

2t

Fig. 40

angle OI'l = 90°—-2¢. Hence angle I'OI = 4¢, angle I'OA = 3¢, and angle
I'NQ = 2t. Therefore ON = OM = 2a, and the circle on I’V as diameter will be of
constant radius 3a and will pass through P. The arc PI' subtends an angle 4 at the
centre of a circle of radius 3a; and the arc AI' subtends 3¢ at the centre of a circle
of radius 4a. Therefore arc PI' = arc AI’, and the locus of P is that of a point on
the circumference of a circle of radius 3a, rolling on the inside of a circle of radius
4a. Thus the astroid may be generated as a hypocycloid in two ways.

[57]



A BOOK OF CURVES

Parametric Equations for the Astroid
In Fig. 39, Ol = 4a,
RI = 4acost,
RP = Rlcost = 4acos?t,
and the distance of P from OY = RPcost = 4acos?t.

Fig. 41

Similarly, QI = 4dasint,
QP = QlIsint = 4asin?t,
and the distance of P from OX = QPsint = 4asindt.
Therefore, if the coordinates of P are (x, y),

x = 4acos’t and y = 4asint.

Further Exercises

1. The line I'PI (Fig. 40) is a normal to the astroid at P. Use the fact (proved
above, p. 57) that angle AOI' = 3 xangle AOI to draw a number of normals.
The envelope of these normals is the evolute of the astroid. Any point on it is the
centre of curvature of the astroid at the point from which the corresponding normal
is drawn, i.e. if PI touches the evolute at E (Fig. 42), then E is the centre, and EP
is the radius, of the circle which fits most closely to the astroid in the neighbourhood
of P.
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* 2. If D'OD is drawn (Fig. 42) bisecting angle XOY, meeting at D’ and D the
circle whose centre is O and whose radius is OA4, with D between OX and OY,
prove that angle I'OD’ = 3 xangle JOD. Hence prove that the evolute of the
astroid is another astroid. (Hint: Consider the second method of drawing the
astroid.)

* 3. If Cis a cusp of the evolute, imagine a string laid along the evolute from C
to A, one end being fixed at C. If this string is gradually unwrapped from the

Y

Fig. 42

evolute, as shown in Fig. 41, the point originally at 4 will move along the arc of
the astroid.t Use this to prove that the whole length of the evolute is 484, and
hence that the whole length of the original astroid is 24a. (Hint: Consider the
position when the string lies along CW.)

Area of the Astroid

* In Fig. 42, Pl is a normal to the astroid, touching the evolute at £ and meeting the
axes of the evolute at H and K. Then HK = 8a (see Ex. 2, above). KOHJ is a
rectangle and JE is perpendicular to HK.

T This method of relating the original curve to its evolute is explained more fully on pp. 83, 84.
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Then angle JIE = 2 xangle IOC
= 90°—2¢.

Hence IE = 4asin2t;

but, in Fig. 40, IP = 2asin2t,

IE = 2xIP = %EP.

Now consider Fig. 43, showing PIE and another such line pie, these two lines

meeting at F. AFIi _ FI.Fi
AFPp ~ FP.Fp’

and, as p approaches P, this ratio approaches EI?/EP? or §.
It follows that the area bounded by the arcs AC, BC and the
circular arc AIB is § of that bounded by the three astroidal
arcs AC, BC and APB.

Let the area of the original astroid be S. The evolute is
a similar astroid on double scale, so its area is 4S. Of the
space between, of area 3, § lies outside the circle and 3 inside,

S+3.3S = m(4a)? and hence S = 67a?.

The area of the astroid is thus 3 that of its circumscribed
circle, or 2 times that of its inscribed circle.

The Astroid: Summary
** 1. Parametric equations are x = agcos3t, y = asin®*¢. (The
length 4a is now renamed a.)

2. The Cartesian equation is x% + y% = a4f,

3. ¥ = 180°—1.

4. The pedal equation is r* = a*—3p2

5. A = 3nad.

6. L = 6a; s = 2asin®t, where 0 < ¢ < 90°.

7. p = —|2asin2¢|.

8. The evolute is another astroid, on double the scale of
the original, with its axes at 45° to those of the original.
Parametric equations for the point £ (Fig. 42), using the same
axes as the original and the same parameter ¢, are

x = acost.(1+2sin%*t), y = asint.(1+2cos?f). Fig. 43
9. The length of the tangent, measured between the axes, is constant and

equal to a.
10. The astroid is the envelope of a line of fixed length g, sliding with its ends

on two rectangular axes.
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11. It is the hypocycloid formed by rolling a circle of radius fa or %a on the
inside of one of radius a.

12. Itis the envelope of ellipses having the same centre and orientation, the sum
of their axes being constant.

The astroid seems to have acquired its present name only in 1838, in a book
published in Vienna; it went, even after that time, under various other names, such
as ‘cubocycloid’, ‘paracycle’, ‘four-cusp-curve’, and so on. The equation
x¥+y% = at can, however, be found in Leibniz’s correspondence as early as 1715.
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THE NEPHROID

To Draw a Nephroid (First Method)

Draw rectangular axes OX, OY, and with centre O draw a circle (to be called the
base-circle). With any point Q on the base-circle as centre, draw a circle to touch
the y-axis. Repeat for many positions of Q. The envelope of these circles is the
nephroid (Fig. 44).

Suitable Dimensions

With O in the centre of the paper, the radius 2a of the base-circle should be as

follows:
Paper: 1, 2in. or 5cm.
2. 25in. 6cm.
3, 3in. 8 cm.

The Nephroid as an Epicycloid

Let O, g (Fig. 45) be two positions of Q, with QN, gn the perpendiculars drawn to
OY. Let the circles whose centres are at Q and ¢ intersect at P, and let Qg pro-
duced meet the axis OY at R. Then, in the similar triangles QNR, gnR,

g——? = g—:’ = %I—)I—) (constr.).

Therefore, in triangle QPg, R divides the base Qg externally in the ratio of the other
two sides; hence PR is the external bisector of the angle QPg. If now g approaches
O, PR will in the limit be at right angles to PQ. At the same time, P will become
a point on the nephroid; triangles QNR, QPR will be congruent; and the angles
ORN, QRP will be equal. Qg will become the tangent to the circle at Q, and PR
will be the tangent to the nephroid.

Let the base-circle cut O Y at A (Fig. 46), and let OQ produced and RP produced
meet at 7. Then triangles RQT, RQO are congruent, and Q7T = QO. The circle
QPT, on QT as diameter, will thus be of fixed radius a, and its arc QP will be equal
to the arc QA4 of the base-circle (angle at centre double, radius half). Therefore, if
this circle rolls round the outside of the base-circle, the point P will eventually
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arrive at A. The nephroid, which is the locus of P, is therefore that of a point
fixed on the rolling circle, namely the point which will eventually reach 4.
The nephroid may, therefore, be described as the locus of a point on the circum-
ference of a circle of radius a rolling round the outside of a fixed circle of radius 2a.

Y

/f\ |
N

Fig. 45

It should be noted that, in Fig. 46, Q is the instantaneous centre of the rolling
circle, and P moves at right angles to QP, i.e. along RT. RT is thus the tangent to
the nephroid at P and PQ is the normal.

Parametric Equations for the Nephroid

* If angle XOQ is ¢, and the centre of the rolling circle is O’ (Fig. 46), the coordinates
of O’ are (3acost, 3asint). Angle PO'T = 2t, and the inclination of O'P to OX
is 3¢. The coordinates (x,y) of P are therefore given by

X = 3acost+acos3t, y = 3asint+asin3t.
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For the point diametrically opposite to P on the rolling circle,
x = 3acost—acos3t, y = 3asint—asin3t.

The first pair of equations represent a nephroid orientated as in Fig. 44, the second
pair one with its cusp-line on the axis of x.

Y
R
P
A T
ol
N
[0
t
(0] 2a X
Fig. 46

Pedal Equation of the Nephroid

* In Fig. 46, angle TQP = t. If p is the perpendicular distance from O to PR,
p = 4acost. Applying the cosine formula to triangle OPQ,

r2 = OP? = (2a)®+ (2acost)*+2(2a)(2acost)cost
= 4a%(1 + 3cos??),
4rt—3p® = 16a®.
5 [65] Lc
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Double Generation

* The nephroid may be described as an epicycloid in another way. Let PQ be
produced to meet the base-circle again at U (Fig. 47). Join UO and produce it to
meet PR produced at V. Draw OM perpendicular to QU. Then triangles OMU,
OMQ, TPQ, ONQ are all congruent to each other. Therefore UP = 3UM and,

Y

Fig. 47

since OM is parallel to VP, UV = 3UO = 6a. Hence the circle on UV as diameter,
which passes through P, is of fixed radius 3a. Now consider the arc UP of this
circle and the arc UA of the base-circle. The angle V' is 90° —¢, and therefore the
arc UP subtends 180° —2¢ at the centre of a circle of radius 3a. But angles UOM,
MOQ, QOA are each 90°—1¢; so the arc UA subtends 270° — 3¢ at the centre of a
circle of radius 2a. These arcs UP and UA are therefore equal, and it follows that,
if the circle on UV rolls on the outside of the base-circle, P will eventually coincide
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with 4. The nephroid may thus be described as the locus of a point on the circum-
ference of a circle of radius 3a rolling, so as to make internal contact, on the outside
of a circle of radius 2a.

Further Exercises

1. To draw a nephroid (second method). Draw rectangular axes OX, OY, and a
circle with centre O. With centre at any point R on OY, and radius RO, draw an
arc to cut the circle at T (Fig. 48). Join RT. The envelope of RT, as the position of
R varies, is the nephroid.

Suitable dimensions: With the paper in the ‘portrait’ position and the origin O
in the centre, the radius of the circle should be as large as possible. It is best to

Y

\ - |

Fig. 48

begin with RO just greater than half the radius of the circle and to increase RO
slowly at first, more rapidly later. It is not necessary for RO to be limited to the
span of the compasses, as T can be found by the use of a ruler only.

2. To draw a nephroid (third method). Prove that, in Fig. 47,

angle XOV = 3 xangle XOT.

(Hint: Use the isosceles triangle OVT.) This shows how the tangent VT may be
constructed by joining points on a circle of radius 4a, as follows:

Draw a circle, and a radius OX. Beginning at X, mark points on the circum-
ference at intervals of 10° and number them 0, 1, 2, 3, ... (X itself being numbered
0). Join the points 1 and 3; 2 and 6; 3 and 9; and so on. The envelope of these
joining lines is the nephroid.

Suitable dimensions: The circle should be as large as possible.
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3. In Fig. 47, QU is the normal to the nephroid at P. Use the fact that
angle AOU = 3 xangle AOQ

to draw a number of such normals. The envelope of these normals is the evolute
of the nephroid.

4. Evolute. The similarity of the methods used in Exercises 2 and 3 above, shows
that the evolute is another nephroid, on half the scale of the original one, its cusps
lying on the x-axis (Fig. 49).

Fig. 49

5. Maximum length and width. The maximum length of the nephroid, measured
along OX is 8a; and the maximum width, measured parallel to OY, is 44/2.a.
(Hint: For the maximum width, QP must be parallel to O, therefore ¢ = 45°.)

6. Arc-length. Imagine a string laid along the evolute from the cusp C to the
point A where it is crosses the y-axis. If this string is gradually unwrapped from
the evolute, as shown in Fig. 49, the point starting at 4 will trace out the original
nephroid. Use this to prove that the total arc-length of the evolute is 124, and that
that of the original nephroid is 24a.

7. In Fig. 47, prove that PT = 2 VT. (Hint: Use the similar triangles UPV, QPT.)
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8. Area. The last exercise shows that the tangent to the nephroid, regarded as a
chord of the circumscribing circle, is divided in the ratio 3:1 at the point of contact.
Thus if UQ (Fig. 49) touches the evolute at P, P'Q = 3UQ = QP = {P'P.
Calling the area of the evolute S, so that that of the original nephroid is 45, prove
that 45 = 127a%. (Hint: Follow the method given for the area of the astroid,
p. 59. Since P'Q = L1P'P, the area between the evolute and the circle is § that
between the evolute and the original nephroid.)

9. Use a set square to plot the pedal curve of a nephroid with respect to its
centre, i.e. the locus of the foot of the perpendicular from the centre to a tangent.
This is a curve with two loops, facing inwards along the cusp-line and touching
each other.

The Nephroid: Summary

%k

1. Parametric equations for the curve as shown in Fig. 50 are

x = a(3cost—cos3t),

y = a(3sint—sin 3f).

Y= 21.
The pedal equation is 4r2—3p? = 1642
A = 12na®.

L = 24a; s = 6a(l —cost?), where 0 < ¢ < 180°.
The intrinsic equation is s = 6a(l —cos$y), where 0 < ¥ < 360°.
p = |3asinz|.
8. The evolute is a nephroid on half the linear scale, with its cusp-line at right
angles to that of the original. Its parametric equations are

A AR ol

x = $a(3cost+cos3t), y = la(3sint+sin3?).
(Hint: For a point on the evolute,
x = a(3 cos t—cos 3t)—p sin i,
y = a(3 sin t—sin 3f)+p cos ¥.

It is sufficient to consider only values of ¢ between 0° and 180°; by symmetry
the result holds for the other half of the curve. This avoids the difficulty caused
by the fact that s decreases as ¢ increases from 180° to 360°.)

9. The nephroid is the epicycloid formed by a circle of radius a rolling, with
external contact, on a fixed circle of radius 2a; or by a circle of radius 3a rolling,
with internal contact, on a fixed circle of radius 2a.

10. It is the envelope of the diameter of a circle which rolls on the outside of an
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equal circle. (Hint: In Fig. 46, consider a circle centre T, radius TQ, cutting TR
at D. Prove that arc DQ = arc QA. Then, if the circle whose centre is T rolls
on the base-circle, D will arrive at A. This shows that 7D is a radius fixed relative
to the rolling circle.)

:
N

Fig. 50

e

11. It is the caustic of a circle for parallel rays. (Hint: In Fig. 46, consider the
circle centre O, radius OT. If TM is the perpendicular from T to OX, OT bisects
angle PTM.)

(A good approximation to part of a nephroid, formed in this way, can be seen
by placing a dark-coloured cylindrical saucepan on the ground so that the rays
from the sun or from a powerful electric lamp fall on it at an angle of about 60°
to the horizontal.)
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12. Ttis the caustic of a cardioid with radiant-point at the cusp. (Hint for proof:
In Fig. 24, PA and PO’ make equal angles with PQ. Therefore PO’ is the reflected
ray. But PO’ is a diameter fixed relative to the rolling circle. Therefore the envelope
is a nephroid, by no. 11, above.)

The name nephroid (‘kidney-shaped’) was used for the two-cusped epicycloid by

Proctor in 1878; a year later, Freeth used the same name for a somewhat more
elaborate curve (see p. 135).
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THE DELTOID

To Draw a Deltoid (First Method)

Draw a circle, centre O, and a diameter D'OD. Mark points on this circle at
intervals of 5°, starting from D, and number them 0, 1, 2, 3, ..., in anticlockwise
order, the point D itself being numbered 0. Number alternate points again, starting
from D’, in clockwise order, the intervals O to 1, 1 to 2, etc., being now 10° instead
of 5°. Join the pairs of points having the same numbers, continuing until a three-
cusped curve is completed. This curve is the deltoid.t (Fig. 51)

Suitable Dimensions

It is again convenient to use a semi-circular protractor. If its radius is 2 in. the
centre should be 3% in. from the left-hand edge of the paper. With paper 3p the
whole curve can then be drawn, but with narrower paper one cusp will be cut off.

Envelope of Diameter of a Rolling Circle

In Fig. 52, a circle of radius a, on D'OD as diameter, is drawn as before, and Q’, O
are a pair of corresponding points, with angles DOQ, D'OQ’ equal to ¢ and 2¢
respectively. A circle is drawn with centre O and radius 3a, meeting D'OD pro-
duced at A’ and 4. A variable circle is now drawn with centre Q and radius 2a,
touching the outer fixed circle at 7 and the inner fixed circle at J. Q’Q is produced
to form a diameter P"P’ of this circle.

Angle P'QI = 3t. Hence the arc P’I, which subtends an angle 3¢ at the centre
of a circle of radius 2q, is equal to the arc 47, which subtends an angle ¢ at the
centre of a circle of radius 3a. It follows that, if the circle on JI as diameter were
rolled round the inside of the outer fixed circle, P’ would reach the position 4.
Thus P"P’ is a fixed diameter of the rolling circle, and the deltoid, as drawn above,
may be defined as the envelope of a diameter of a circle of radius 2a rolling round
the inside of a fixed circle of radius 3a.

The Deltoid as a Hypocycloid

The instantaneous centre of the rolling circle is at 1. If IP is drawn at right angles
to the diameter P"P’ (Fig. 52), P will move at right angles to PI, i.e. along the
1 See footnote, p. 54.
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diameter. Every other point on the diameter will be moving in a different direction;
hence P is the point of contact of the diameter with its envelope the deltoid.

Consider now the circle on IQ as diameter. It will pass through P, and its arc
IP (subtending an angle 3¢ at the centre of a circle of radius a) will be equal to the
arc I4 (subtending an angle ¢ at the centre of a circle of radius 3a). Hence, if
the circle on 7Q (shown in Fig. 53) rolls on the inside of the outer fixed circle,
P will arrive at 4. The deltoid, the locus of P, is therefore a hypocycloid.

Fig. 52

Now produce IP to meet the outer circle at I’ (Fig. 53). Then I'OQ’ is a straight
line (for angle I = 90°—3¢; therefore angle I'OI = 3¢, and angle I'OA4 = 2t). The
circle on I'Q’ as diameter will therefore have a fixed radius 22 and will pass through P.
Moreover, its arc I'P (angle at centre 3¢, radius 2a) is equal to the arc I'4 of the
fixed circle (angle at centre 2¢, radius 3a). Hence the locus of P is that of a point on
the circumference of a circle of radius 2a rolling on the inside of a fixed circle of
radius 3a.

Thus the deltoid may be generated as a hypocycloid in two ways, the rolling
circle having a radius equal to either 4 or % that of the fixed circle.
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Motion of Diameter of the Rolling Circle

* It wasseen that, in Fig. 52, P’ was a fixed point on the circumference of the rolling
circle, the radius of that circle being % that of the fixed circle. Its locus is therefore
a deltoid and, since it reaches the fixed circle at A4, the cusps of this deltoid must
coincide with those of the locus of P, and the envelope of the diameter P"P’. The
same applies to the other end of the diameter, P”, the cusps of its locus being in the
same positions, since the semicircular arc P'P” is of length one-third that of the

Fig. 53

circumference of the fixed circle. (After the circle has rolled once round, P’ and
P” will have changed places.)

Thus P, P’ and P" all have the same locus, which s also the envelope of the diameter
P’P’. This diameter in fact moves with its two ends on the deltoid which it touches.

To Draw a Deltoid (Second Method)

Proceed as in the first method ; but, on joining any pair of points O, Q’, produce the
line both ways and mark points on it at a distance 2a from Q. The deltoid will be
formed partly as an envelope, partly as a locus.
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Parametric Equations

* In Fig. 52, QP’ makes an angle 17 with OA. If OA4 is taken as axis of x and a line
through O at right angles to it as axis of y, the coordinates (x,y) of P’ are given by

x = OQcost+ QP’'cos}t = acost+2acosit;
y = 0Qsint— QP'sinit = asint—2asin}t.
**The coordinates of P are likewise given by
x = OQcost+ QPcos3t
= qcost+2acos3tcosit = acos2t+2acost;
y = 0Qsint— QPsin}t
= asint—2acos3tsinit = —asin2t+ 2asint.

It will be noticed that the second pair of equations can be obtained from the
first pair by changing ¢ into — 2¢. This means that, if the rolling circle, starting from
A, were to go twice as far in the opposite direction, P’ would reach the position
occupied by P.

Geometrical Properties

1. The tangent to the deltoid, measured between the two points in which it cuts
the curve again, is of constant length 4a.

2. The tangents to the deltoid at P’ and P” (Fig. 54) meet at right angles at a
point on the inner fixed circle. (Hint: Since [ is the instantaneous centre of the
rolling circle, these tangents are at right angles respectively to P'7 and P’I, and meet
at the point called J in Fig. 52.)

3. The normals at P, P’ and P” meet on the outer fixed circle.

* 4. Suppose that, in Fig. 53, a line E'OE is drawn so that angle AOE = 60°
(measured anticlockwise). Prove that angle I'OE’ = 2 x angle IOE. Hence prove
that the evolute of a deltoid is another deltoid.

* 5. Prove that the whole length of the evolute is 484, and that of the original
deltoid 16a. (Hint: Use the method suggested for the astroid, p. 59.)

Further Drawing Exercises

* 1. Draw a circle and inscribe in it a triangle, which should be neither right-
angled nor isosceles. Take any point P on the circle and use a set square to mark the
feet of the perpendiculars from it to the sides of the triangle. (The perpendiculars
should not be drawn.) Verify that the three points so found lie on a straight line.
Draw this line (known as Simson’s Line) for a large number of positions of P.
Its envelope is a deltoid (Fig. 51).
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Suitable Dimensions
The diameter of the circle should be less than two-thirds the width of the paper.
The triangle may be acute- or obtuse-angled, but, if an obtuse-angled triangle is
used, it is the triangle rather than the circle that should be in the middle. It is
advisable to draw the sides of the triangle in ink. They will need to be produced,

Fig. 54

and this may be done in pencil. It is best to mark five or six positions of P and draw
the corresponding Simson Lines before going on to another batch.

2. Find the nine-points centre of the same triangle (i.e. the mid-point of the line
joining the centre of the circle to the point where the altitudes of the triangle meet).
Verify that it is the centre of the deltoid, that the lines joining it to the cusps make
angles of 120° with one another, and that the nine-points circle of the triangle (radius
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half that of the circumcircle) is the inscribed circle of the deltoid. Draw also the
circumcircle of the deltoid, with radius 2 times that of the circumcircle of the
triangle.

(For a proof of these properties, see The Mathematical Gazette, vol. XXXVII,
p. 124. They are illustrated in a film by T. Fletcher, of the Sir John Cass College,
London, E.C. 3.)

3. In the same figure, draw the trisectors of the three angles of the triangle.
Of those from two vertices B and C mark the intersection nearest to BC. Do the
same for the other two pairs of vertices. The three points marked in this way form
an equilateral triangle (Morley’s triangle) which is orientated in the same way as the
deltoid (see Fig. 51).

* 4. If a triangle rotates within its circumcircle, the envelope of the Simson Line
of a fixed point on that circle is a cardioid. To draw this, mark points at 10°
intervals round a circle. Choose one of these points as the fixed point P and
three more of them to form one position of the triangle ABC. Starting from A4,
label the points 0, 1, 2, 3, ..., in clockwise order, 4 itself being 0. Do the same,
starting from B and from C. The three points labelled ‘1’ represent ‘position 1’
of the triangle. Place a ruler as if for joining two of the points labelled ‘1’ and,
with the aid of a set square, mark the foot of the perpendicular from P. Do the
same using a different pair of points labelled 1°. Join the two points so marked : this
is ‘position 1’ of the Simson Line and should be so labelled. Repeat for position 2
and so on (see The Mathematical Gazette, vol. XL1v, p. 216).

The Deltoid: Summary
** 1. Parametric equations are
x = 2acost+acos2t, y = 2asint—asin2t.

(These are coordinates of P in Fig. 53.)
2. ¥ = 180°—4r.

3. The cusps are at ¢ = 0°, 120°, 240°.

4. The pedal equation is r2+8p? = 9a2.

5. A = 2na?.

6. L = 16a;s = %a(1 —cos2t), where 0 < ¢t < 120°.
7. p = —|8asindt|.

8.

The evolute is a deltoid on three times the linear scale of the original, with a
60° change in orientation. Its parametric equations (referred to the same axes)

are X = 6acost—3acos2t, y = 6asint+3asin2t.

9. The deltoid is a hypocycloid formed by rolling a circle of radius a or 2a on
the inside of a fixed circle of radius 3a.
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10. It is the envelope of a diameter of a circle of radius 2a rolling on the inside
of a fixed circle of radius 3a.

11. The envelope of the Simson’s Lines of a triangle is a deltoid whose inscribed
circle is the nine-points circle of the triangle.

12. The tangent to the deltoid, terminated at the points where it meets the curve
again, is of constant length, and its mid-point lies on the inscribed circle.

13. The tangents at those points are at right angles and meet on the inscribed
circle; the normals at the same points and at the point of contact of the original
tangent are concurrent, meeting on the circumscribed circle.

That the envelope of the Simson’s Lines of a triangle was a three-cusped sym-
metrical curve was discovered by J. Steiner in 1856; the curve was soon recognized
as a hypocycloid and it is indeed often referred to as Steiner’s hypocycloid. Our
name, deltoid (‘shaped like a Greek letter A’), is not used everywhere.

[79]






9

THE CYCLOID

To Draw a Cycloid (First Method)

Draw two lines ‘horizontally’ (i.e. across the page) at a distance g apart. Draw a
series of ‘vertical’ lines crossing the ‘horizontal’ lines at intervals of 27a/18
(= 0-35a, approx.). Label the points on the upper ‘horizontal’line 0, 1, 2, 3, ..., 18,
and with these points as centres draw circles of radius a. These represent positions
of a circle rolling along the lower ‘horizontal’ line, the intervals corresponding to
turns of 20°. From the points 0, 1, 2, 3, ..., draw radii at 0°, 20°, 40°, 60°, ..., to
the ‘vertical’ lines, the angles being measured away from the side towards which the
circle is rolling (Fig. 55). These radii represent successive positions of a radius
fixed on the rolling circle. Their extremities lie on the cycloid.

Suitable Dimensions

Radius a Intervals 0-35a
Paper: 1, lin. or3cm. 0-35in. or 1-05 cm.
2, 1'43in. 4cm. 0-5 in. 1-4 cm.
3, 2in. 5 cm. 0-7 in. 1-75 cm.

The lower ‘horizontal’ line should run across the middle of the paper.

(This method of drawing the cycloid shows clearly the nature of the curve and is
recommended for a first drawing. In practice the next method, which is essentially
the same, will be found to be quicker.)

To Draw a Cycloid (Second Method)

Draw a ‘horizontal’ line and mark on it nineteen points at intervals of 0-:35a. (These
will be referred to as ‘points 0, 1, 2, 3, ..., counting from left to right.) With point0
as centre and radius a draw a semicircle, to the left, and mark points on it at
20° intervals, starting from the bottom. Through these ten points draw ‘horizontal’
lines (to be referred to as ‘lines 0, 1, 2, 3, ..., 9°, the lowest one being ‘line 0°).
With radius a and points 0, 1, 2, 3, ..., 18 as centres, draw arcs cutting or touching
lines 0, 1, 2,3, ..., 8,9, 8, ..., 0, respectively. (The arcs drawn with centres 0, 9
and 18 will touch the corresponding ‘horizontal”’ line. In other cases the inter-
section on the side away from the centre of the diagram must be chosen.)

6 [81] LC
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Parametric Equations of the Cycloid
Let an arch of the cycloid be 4CB, with C the middle point (Fig. 56). Let P be any
point on the curve, with OP the corresponding radius of the rolling circle. Let PM
be the perpendicular drawn from P to the ‘vertical’ radius OI. Then, if OP = gand
angle MOP is t (radians), A] = arc PI = at. Using rectangular axes ABX, AY, the
coordinates (x,y) of P are given by

X = at—asint = a(t—sint),

y = a—acost = a(l —cost).

These are parametric equations for the cycloid.

Y
D C
Q - ~<
”~ ~
. ~
g ~
s ~
7 N
N
N
N
N
\
AY
N
\
N\
\
AN
\
P, \\
N
~
\\
A B X
Fig. 56

Roberval’s Curve

Draw successive positions of PM. The locus of M (Roberval’s curve) divides each
of the rectangles AC and CB symmetrically; for, if PM and QN correspond to
t and 7 — ¢ respectively, it is seen that N is as far below and to the left of C as
M is above and to the right of 4. (These distances are, respectively, a—acost?
and at.)

The length of the base-line 4B is equal to that of the circumference of the rolling
circle, 2ma. Therefore the area between Roberval’s curve and the base-line is equal
to half the rectangle 27ma.2a, i.e. to 2ma®. Roberval found the area between his
curve and the cycloid by observing that the width PM is everywhere equal to the
width, at the same height, of the semicircle on 4D as diameter (see Fig. 56). He
concluded that the area between the two arcs AC was equal to that of the semi-
circle, and thus found that the area of the cycloidal arch was 27a%+ 7a?, i.e. 3ma?.
(See pp. 84, 150, for other ways of finding this area.)
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Tangent, Normal and Evolute

The instantaneous centre of the rolling circle is at 7; therefore P is moving at right
angles to PI, i.e. towards J, the opposite end of the diameter through 7 (Fig. 57).
Thus PJ is the tangent to the curve at P and PI is the normal. If PIis produced to
P’ so that PI = IP’, the distances of P’ to the right of and below A are the same as
those of O to the left of and below C, Q being defined as before. (These distances
are, respectively, af+asint and a—acost.) It follows that the locus of P’ is an
equal cycloid, the centre of one arch being at A.

D / 5 ¢ E
///f N
/]
0 0
P
1
A , B
P/ -D
1/ AI

Fig. 57

This cycloid would be the locus of a point on the circumference of a circle of
radius a rolling along the line 1’4" shown in Fig. 57, I’ being the instantaneous
centre when the tracing-point is at P’. The direction of motion of P’ is at right
angles to P’I', i.e. along IP’. Thus PIP’ is a tangent to the new cycloid as well as a
normal to the original one; and the new cycloid is the evolute of the other.

Arc-Length

Let PP’ and pp’ be two normals to the cycloid at P and p (Fig. 58); let their point
of intersection be R and let their points of contact with the evolute be P’ and p’
respectively. The nearer p is to P, the nearer will angles pPR and PpR be to right
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angles, and the more nearly will RP and Rp be equal. Then pp’'—PP’ is very
nearly equal to P’R+ Rp’, which in turn is very nearly the length of the arc
P'p’ of the evolute. Thus if a string were laid along the evolute from p’ to P’
and thence along the straight line P'P, it could be ‘unwrapped’ into the
position p'p.T

Suppose that a string is laid along the arc 4’4 (Fig. 57) of the evolute, the end 4’
being fixed, and is ‘unwrapped’ from 4. The end of the string at 4 will move along
the original cycloid to C. It follows that the length of the half-arch 4’4 of the
evolute is equal to 4'C, i.e. to 4a. The length of a complete arch of either cycloid is
thus 8a.

By the same argument, the arc AP’ of the evolute is equal to PP’, or twice IP".
It follows that the arc PC of the original cycloid is equal to twice PJ.

Area of the Cycloidal Arch

* In Fig. 59, P and p are points on the cycloid, with P’ and p’ the corresponding
points of the evolute, the two normals cutting the base-line at I and 7, and meeting
each other at R. Then PI = IP’ and pi = ip'.

—AA—]%’) - gf% (by use of the formula A = 1absinC),

and this approaches the limiting value # as p approaches P. It follows that the area
AA'B (Fig. 57), between the evolute and the original base-line 4B, is 1 the area
ACBA’, between the evolute and the original cycloid. But the two parts 4A’D’A4 and
A’ D’B of the former area are congruent respectively to BEC and ADC. Therefore,
these last two areas are together 7 of the rectangle ABED, and the area of the

cycloidal arch is # of that rectangle, i.e. # x 27a.2a, or 3ma®.

+ This is an intuitive argument: by using the methods of the Differential Calculus it can be
proved rigorously that the arc of the evolute between any two points is equal to the difference of
the radii of curvature at the corresponding points of the original curve.
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Motion of the Tracing-Point

** If the rolling circle turns at a uniform speed w, the velocity of the tracing-point is
w.IP, since I is the instantaneous centre (Fig. 57). This is equal to jw.PP’, or
twxarc AP'. The acceleration of P along the arc is therefore equal to Jw x the
velocity of P’ along the arc of the evolute. But

the velocity of P’ = . P'I' = w.PJ = Jw xarc PC.

Thus the acceleration of P along the arc = fw?xarc PC. The motion of P along
the arc is therefore simple harmonic.¥

Fig. 59 b
Tautochrone Property of the Cycloid
** Fig. 60 is the same as Fig. 57, lettered the same way, but turned through two right
angles. The angle between the tangent at P and the horizontal is called {. Angle
PlJ is also equal to 3. If P is a particle sliding under gravity along a smooth
cycloidal arc ACB, its acceleration along the arc will be gsin, i.e.

pJ g g
gy ©f EZ'PJ or Z(—lxarcCP.

Thus the motion of P along the arc will be simple harmonic, with period 27,/(4a/g),
the period being thus independent of the starting-point. The word fautochrone is
used for a curve such that the time of descent from any point to the lowest point is
always the same.

+ Mr P. Gant has pointed out that, since the motion of O is uniform, the resultant acceleration
of P is aw? along PO; constant in magnitude, though varying in direction.
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Isochrone Property

** If, instead of sliding on a smooth curve, P is attached to A’ by a string constrained
to move between the cycloidal arcs 4’4 and A4’B, the same motion will result. This
is the cycloidal pendulum. 1t has the isochronous property, that the time of swing is
independent of the amplitude.

Further Drawing Exercises

1. Envelope method. This is a quicker way of drawing a cycloid than those
described above. Draw a line across the paper and mark nineteen points on it at

AI
B A
I
¥ %
P
C J
Fig. 60

intervals 0-35a, where a is a convenient constant. With centres at the second, third,
fourth, ..., points draw arcs of radii 2asin10°, 2asin 20°, 24sin30° .... Draw a
freechand curve touching all these arcs.

2. Your original drawing of the cycloid shows a radius of the rolling circle in
nineteen different positions. Produce these nineteen radii till each intersects its
neighbours and draw a freehand curve touching all of them.

*  Consider a circle on OI as diameter (Fig. 61), cutting OP at X. Prove that the
arc IX is equal to /4, and that the locus of X is a cycloid to which XO is a tangent.
But, as XO is part of a fixed diameter of the original rolling circle, this proves that
the envelope of a diameter of a rolling circle is a cycloid.

3. Draw an approximate cycloidal arch with the aid of circular arcs, as shown in
Fig. 62. (A'is the centre of curvature, with radius 4a, for the point C of the cycloid;
H and K are centres of curvature, with radius 2a, for the points P and Q, where HP
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and KQ are inclined at 30° to the base-line.) The dotted curves indicate the parts
of the arch which may be drawn frechand. Alternatively, the larger joining arcs
may be drawn with compasses, using radius 3-35a and centres at distances 0-25a
on either side of A’L, at a height 0-64 above 4’. Similarly the smaller joining arcs
may be drawn with radius 0-8a and centres on AB.

The Cycloid: Summary

** 1. Parametric equations are x = a(t—sin¢), y = a(l —cos?).

2. i = 90°—1it.

Fig. 61

3. Area between one arch and the base = 3ma?.

4. s = 4a(l —cosit), where 0 < ¢ < 360°.

5. The intrinsic equation, for one arch, is s = 4a(1 —siny); or, with origin at
the centre of the arch, s = 4asiny.

6. Length of base-line from cusp to cusp = 2ma.

7. p = —|4asinit|.

8. The evolute is an equal cycloid.

9. The cycloid is the locus of a point on the circumference of a circle rolling
along a fixed straight line.
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10. It is the envelope of a diameter of a circle rolling along a fixed straight line.

11. If a particle moves under gravity along a smooth curve in the form of a
cycloid, placed in a vertical plane with its cusps pointing vertically upwards, the
time of descent to the lowest point is independent of the starting position (the
Tautochrone Property).

12. The cycloid is the curve down which a smooth particle will most quickly
move under gravity from one given point to another the (Brachystochrone
Property).

P
.’ a !
A
2
\ 0-5a /
H 1-25a L 1:25a K
1-5a
4
Fig. 62

The early history of the cycloid is mixed with legend, starting with Galileo’s
attempt to find the area. This was perhaps by weighing shaped pieces of metal, in
the expectation that the ratio of cycloid to generating circle would be as 7 to 1. The
exact area was found by Galileo’s pupil Torricelli, and also by Fermat, Roberval
and Descartes. Roberval and Christopher Wren succeeded in finding the length of
the arc, and in 1658 Pascal offered a prize for the solution of a number of problems
connected with ‘la Roulette’ (as it was called by the French: Galileo had probably
given it the name of ‘cycloid’). Only two serious competitors seem to have sent in
their answers, Laloucre and Wallis. Pascal did not award the prize and his Histoire
de la Roulette led to some sorry examples of almost nationalistic polemics. The
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isochrone and tautochrone properties were discovered by Huygens, and the brachy-
stochrone property by James Bernoulli. The first pendulum clock, invented by
Huygens, contained a device for making the pendulum isochronous by causing it
to describe a cycloidal arc, using the evolute of the curve as a guide (see p. 86);
but this refinement is vitiated by mechanical difficulties in construction. Cycloidal

teeth for gear wheels had already been proposed by Desargues in the earlier part
of the seventeenth century.
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THE RIGHT STROPHOID

To Draw a Strophoid (First Method)
Let POR be a 60° set square, with the right angle at P and the 60° angle at Q. Let
O be a fixed point whose perpendicular distance OA from a fixed straight line is
equal to the shortest side PQ of the set square. If the set square is placed with Q on
the fixed line and PR passing through O (Figs. 64, 65), the locus of P is a strophoid.

Fig. 64

Suitable Dimensions

With the paper in the ‘portrait’ position, the point A should be in the centre,
with the fixed line ‘vertical’. The width of the paper should be more than twice the
shortest side of the set square.

To Draw a Strophoid (Second Method)

Let OP meet QA at N (Figs. 64, 65). Triangles 040, QPO are congruent and so
are triangles OAN, QPN. Therefore NP = NA. This leads to the following (more
accurate) method of drawing the curve:

[91]
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Let O be a fixed point and OA the perpendicular drawn from O to a fixed line.
Draw any line through O, cutting the fixed line at N, and mark on it two points
P and P’ such that NP = NP’ = NA. The locus of these points, as ON varies in
direction, is the strophoid. (The word strophoid is used more generally for any

Fig. 65

curve that can be drawn in this manner. See p. 135. The particular strophoid
described here is properly known as the right strophoid.)

Asymptote

It will be seen that, as N moves further away from A, one of the points P, P’ moves
nearer to O and the other approaches a straight line, parallel to the fixed line,
whose distance from O is equal to twice OA. This line is an asymptote to the
curve.

Polar Equation of the Right Strophoid

If OA (of length a) is taken as initial line, and angle AOP is 0, then the length r of
OP is equal to ON + NA. The polar equation is, therefore,

r = a(secd + tan0).
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The Strophoid as the Pedal of a Parabola

In Figs. 64, 65, it was seen that triangles OPQ, QA0 were congruent. Therefore the
points O and Q, and also the points 4 and P, are symmetrically placed with respect
to an axis passing through N. Let NT be this axis (Fig. 66), and let it cut OQ at U,
AP at V. If Bis the mid-point of OA4, UB will be parallel to the fixed line 4Q, and
will itself be a fixed line. Since O is a fixed point and angle OUT is a right angle,
the envelope of NT will be a parabola whose focus is O and whose directrix is the
fixed line AQ (see p. 3). The point V is the foot of the perpendicular from 4 to

T )
U
N P
Vv
(0 / B A

Fig. 66

the tangent NT to this parabola. The locus of V' is thus the pedal of 4 with respect
to the parabola, and the locus of P, the strophoid, is a similar curve on double
scale.

Motion of the Set Square
* If T is the point of contact of NT with the parabola, TQ will be perpendicular to
AQ; for TQ = TO (by symmetry), and 70O is equal to the perpendicular distance
from T to AQ (by the focus and directrix property of the parabola).
Now consider the motion of the set square in Figs. 64, 65. Q is moving along
ON and the point of the set square which is momentarily at O is moving in the
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direction NO. But angles TQN and TON are right angles; therefore the instan-
taneous centre is at 7. Hence P is moving at right angles to PT, and PT is a normal
to the strophoid at P.

To Draw a Strophoid (Envelope Method)
Draw a parabola with focus O and vertex B, its axis OB meeting the directrix at 4
(as in Fig. 66). With any point 7 on the parabola as centre, and radius 74, draw a
circle. Repeat for numerous positions of 7. The envelope of these circles will be

a right strophoid (Fig. 63).

o / B
Fig. 67

Suitable dimensions: With the paper in the ‘portrait’ position, the point O
should be in the centre, with OB ‘horizontal’. The distance OB should be about
an eighth of the width of the paper.

*  Proof: If T and T" are points on the parabola (Fig. 67), and the corresponding
circles intersect again at P’, then triangles T7'A4, TT'P’ are congruent. Hence P’
is the image of A in the chord T7". As T approaches T, the chord becomes the
tangent at T to the parabola, and P’ becomes the point P of Fig. 66.

Moreover, as T is the instantaneous centre of the moving set square when its
right-angled corner is at P, the tangent to the strophoid is at right angles to TP,
i.e. in the same direction as the tangent at P to the circle whose centre is 7.
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Further Drawing Exercises
1. The obligue strophoid. Let O be a fixed point and let 4 be a point on a fixed
line, other than the foot of the perpendicular from O. Draw any line through O,
cutting the fixed line at N, and mark on it two points P and P’ such that
NP = NP’ = NA.

The locus of these points, as the line through O varies, is an oblique strophoid.
2. The right strophoid as a cissoid. Let OX, OY be perpendicular lines through
the centre O of a circle, OX cutting the circle at 4 (Fig. 68). Draw any line

Y

Fig. 68

through A, meeting OY at L and meeting the circle again at M. Mark a point P
on this line such that AP = LM, the direction from A4 to P being the same as that
from L to M. Repeat for numerous positions of the line through A4. The locus of P
will be a right strophoid.

A curve drawn in this manner is called a Cissoid. See chapter 15, p. 131.

Suitable dimensions: With the paper in the ‘portrait’ position, OA4 should be in
the middle, and should be ‘horizontal’. Its length should be rather less than one-
third of the width of the paper.
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Proof: If the tangent to the circle at A meets OP, produced if necessary, at N,
triangle NAP is similar to triangle OLP. But OL = OP; therefore NP = NA.
(The oblique strophoid also may be drawn in this manner, the lines OX and OY

being no longer at right angles.)

Fig. 69

The Right Strophoid: Summary
** The vertex is O and the node is A (Fig. 69). OA is used as initial line for polar
coordinates and as axis of x for rectangular Cartesian coordinates.

1. The polar equations are:
(with pole at O) r = a(sect + tan0);
(with pole at 4) r = a(secO—2cos0).
2. The Cartesian equations are:
(with origin at 0) y*2a—x) = x(x—a)*;
(with origin at 4)  y*(a—x) = x*a+x).
3. With pole at O, tan¢ = +cos6. A line through O makes equal angles with
the curve at its other two points of intersection.

[96]



THE RIGHT STROPHOID

4. With O as centre of inversion, and radius of inversion a, the curve inverts
into itself; with 4 as centre, and the same radius of inversion, the inverse is a
rectangular hyperbola whose vertices are at O and A.

5. Area of loop = 44%4—m); area between curve and asymptote = 3a%(4 +m).

6. Parametric equations, with A4 as origin, are:

-1 12—1

X=a.-—, = at.—.
r2+1 Y £+1

7. The Right Strophoid is the strophoid of a straight line with respect to a pole
O, with the foot of the perpendicular from O to the line as fixed point. (See p. 135
for definition of ‘strophoid’.)

8. It is the pedal of a parabola with respect to the point of intersection of the
axis and the directrix.

9. It is the inverse of a rectangular hyperbola with respect to a vertex.

10. Itis the cissoid of a circle and one of its diameters with respect to a point on
the circumference equidistant from the ends of the diameter.

The strophoid was first described in the correspondence of Torricelli, about
1645. It was first found (probably by Roberval) as the locus of the foci of a (vari-
able) conic section when the plane cutting the cone turns about the tangent at the
vertex of the conic. The modern name (which possibly means ‘shaped like a
strophos, the belt with a twist to carry a sword’) comes from a French writer,
Montucci, 1846.
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THE EQUIANGULAR SPIRAL

The Problem of the Four Dogs

A courtyard ABCD is a square of side 200 ft. (Fig. 71). Four dogs are started
simultaneously from the four corners, the one at 4 facing towards B, the one at B
towards C, and so on. Each dog pursues the next at a uniform speed of 20 ft. per
sec. If 4’, B’, C" and D’ are simultaneous positions of the dogs that started at

B C

Fig. 71

A, B, C and D respectively, it is evident from symmetry that 4’B'C’'D’ will be a
square and the direction of motion of each dog will be along one side of the square,
i.e. at 45° to the line joining it to the centre O of the courtyard. This will be true in
any position and the fact characterizes the curve along which a dog moves. Such a
curve, in which the tangent at any point makes a constant angle with the radius
drawn to that point from a fixed point, is called an equiangular spiral.
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As the dog at B’ is moving at right angles to A'B’, the distance 4’B’ is diminishing
at 20 ft. per sec. and will be reduced to zero in 10 sec. from the start. The total
length of the curve from A4 to the point where they meet is therefore 200 ft.

A'B’ is a tangent to the curve A4’ and a normal to BB’. As this is so in any
position, it follows that A4’ is the evolute of BB’ and the point 4’ is the centre of
curvature for the curve BB’ at B'. Thus each dog is at the centre of curvature of the
path of the next one. (As the radius of curvature diminishes, the dogs will in
practice slip, at a moment depending on the coefficient of friction.)

To Draw an Equiangular Spiral
Draw a series of lines, at equal intervals, radiating from a fixed point (called the
pole). From a point on one of these lines draw a perpendicular to the next; from
the foot of that perpendicular draw a perpendicular to the next line; and so on.
A freehand curve may then be drawn through all the points so found.

Fig. 72

Suitable Dimensions

The pole should be in the middle of the paper and the radiating lines may
conveniently be taken at 10° intervals. The first point should be near the middle of
a long edge of the paper. Several complete turns of the spiral should be drawn;
it may also be continued backwards from the starting-point.

Geometrical Properties
Fig. 72 shows three successive points, P, O, R, of the drawing described above,
O being the pole. P’, Q’, R’ are the three corresponding points of the next circuit,
and P”, Q”, R” those of the following circuit.

Triangles OPQ, OQR, ..., are similar, since corresponding angles are equal.
Therefore, OQ/OP = OR/OQ = ..., and the lengths OP, OQ, OR, ..., are in
geometrical progression. But the triangles OP'Q’, OQ’'R/, ..., are part of the same
series of triangles, and OP’, OQ’, OR/, ..., are terms of the same geometrical pro-
gression. Again, OP, OP’, OP”, ..., form a geometrical progression, for they are
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equally spaced terms of the one just mentioned. (This provides a useful check on
the accuracy of the drawing, especially in the part near the pole.)

Another geometrical progression is formed by the lengths PQ, QOR, ..., P'Q’,
Q'R’, .... Moreover, the quadrilaterals PQQ'P’, QRR'Q’, ..., are all similar, for
they have corresponding angles equal and pairs of sides in proportion.

If the diagram had been drawn by marking lengths OP, OQ, OR, ..., in geo-
metrical progression, along equally spaced radii, the same similarity properties
would have held good, though the angles OQP, ORQ, ..., would not necessarily
have been right angles.

Intermediate Points on the Curve: Polar Equation

The method given above for drawing the curve determines certain points P, Q, R,
but not the intermediate points. To preserve the similarity properties, i.e. to make
them applicable at all points on the curve, it is only necessary to ensure that the
radii drawn at any equal intervals of angle should be in geometrical progression.
The problem of determining intermediate points therefore reduces to that of
inserting geometric means between the lengths OP, OQ, ..., of existing radii.
Thus, for example, the radius bisecting angle POQ should be of length /(OP.0Q).
More generally, let POQ be taken as a unitof angle, and let OQ/OP = OR/0Q = k.
Then, if OP = r,, OQ will be ryk and OR will be r k% At a point three units of
angle from OP the radius will be ryk®, and so on. On this principle we may define
intermediate points (and indeed all points) on the curve by the equation

r = rok’,

where r is the length of the radius making an angle of 6 units with the initial radius
OP, of length ry. This is the polar equation of the curve. (See also p. 107 for a more
usual form of the equation.)

The constant k in this equation may be greater or less than 1. In the method of
drawing suggested above, it is less than 1 and the radii OP, 0Q, OR, ..., diminish
as 0 increases; but, if it is greater than 1, r increases with ¢ and in fact, if k£ is equal
to the reciprocal of its former value, an identical curve is produced (or, to be
precise, a mirror image of the former curve).

It should also be noted that the ratio & depends on the unit of angle chosen. Thus
in the original drawing, if the unit is 10°, £ = cos10° = 0-9848. If the unit of
angle is changed to one revolution, the new value of k is (0-9848)3.

The Equiangular Property

If now OU, OV, OW, ..., are equally spaced radii at any part of the curve (Fig. 73),
so that the values of 6, namely 6,, 6,, 0, ..., are in arithmetical progression, it
follows from the above equation that the values of r, namely ry, ry, r3, ..., are in
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geometrical progression; for ry/r; = k%% = k%% = rgfr,. Hence the triangles
ouv, OVW, ..., are similar. If now U, V, W, ..., are taken very close together,
the angles OUV, OVW, ..., will be very nearly the angles between the tangents to the
curve and the radii OU, OV, .... Butangles OUV, OVW, ..., are all equal. Hence,
in the limit, the angle between the tangent to the curve and the radius is constant.

Similarity Properties
The similarity properties mentioned on p. 100 for the plotted points P, O, R, ...,
P, Q', R, ..., are now seen to be applicable at any points of the curve U, V, W, ...,
provided always that they are spaced at equal intervals of angle. These facts
account for many of the remarkable properties of the curve. If any part of the

0 Fig. 73
curve is enlarged or reduced in any ratio, it becomes congruent to another part;
and, if the whole curve from any point to the pole is enlarged or reduced, it becomes
congruent to the same curve from another point to the pole. This can be illustrated
by rotating the curve about the pole as centre. (A pin or spike may be pushed
through the paper at the pole and the paper rotated in a vertical plane.)

Certain shells and fossils have forms closely resembling the equiangular spiral,
the animal living in the shell having grown uniformly and having occupied succes-
sive portions each similar to the last. (See the frontispiece.) Horns, nails and hairs
tend to grow in this shape, a fact which may be explained by the two sides having
rates of growth which are in a constant ratio.

An Unending Curve...
It appears from the method of drawing the curve that there is no point from which a
further point cannot be found, whether we are proceeding in the outward or the
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inward direction. There are thus, in this sense, no end-points. Again, from the
equation, there is a value of r for every value of 0, positive or negative; moreover r
increases or decreases as 6 changes, approaching zero in one direction and increasing
indefinitely in the other. Thus we may say that, starting from any point, the curve
makes an infinite number of circuits round the pole on either side of that point.

...of Finite Length

Imagine that the curve rolls (without slipping) along a straight line, the straight
line being always a tangent to it. Let the point of contact at any moment be I,
and let the radius OI make a constant angle o with the tangent (Fig. 74). Then [ is
the instantaneous centre, and the pole O will move at right angles to O], i.e. in a

Fig. 74

fixed direction. It will, therefore, move in a straight line, meeting the fixed line at 7,
where IT = Olseca. It follows that the length of the spiral from 7 to the pole is
Olseca.

** This paradox, that an unending curve should have a finite length,} depends on
the precise meaning which we attach to the word end. Although there is no point
of the curve itself which can be described as the end-point, nevertheless, there is
a point, namely the pole, which the curve approaches and beyond which it does not
go. If we divide the curve by successive units of angle and the length of one partis /,
the succeeding parts will be Ik, Ik?, Ik3, ..., and the whole length to the pole may be
defined as the limiting sum of the series

I+1k+1k2+1K3+....

+ Wallis wrote of this curve (Opera, vol. 1, p. 561, 1695) ‘Habes itaque curvam interminabilem
terminatae rectae aequalum’.
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Since k is less than 1 (for we are proceeding towards the pole), this is a convergent
geometric series. It will be noticed that we have divided the curve into diminishing
sections of arc-length not unlike the diminishing intervals of time in the better-known
paradox of Achilles and the Tortoise.

Caustic

If a ray of light from a source at O is reflected by the curve at P, the envelope
of the reflected ray, as P varies, is an equal spiral.
Proof: In Fig. 75, let R be the image of O in PN. Then PR is the reflected ray.

Fig. 75

Since OR = 20Pcosa and the angle POR is constant, the locus of R is a spiral
similar to, and therefore equal to, the original spiral. But angle ORP = «; there-
fore RP is a tangent to this spiral, and the result follows.

A Roulette
Suppose that, in Fig. 75, the tangent at P meets NO produced at T. Then
PT = OPseca, and this is the arc-length of the curve from P to the pole. There-
fore, if the tangent PT rolls on the curve without slipping, T is a fixed point
relative to it. But OT makes a constant angle with OP and its length is propor-
tional to OP; therefore the locus of T is a spiral similar to, and hence equal to,
the original spiral.
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Evolute

Let P be any point on the spiral, with « the constant angle between OP and the
tangent. Let PN be the normal, meeting at N a line through O at right angles to OP
(Fig. 75). Then angle ONP = a. As ON is in a fixed ratio to OP and makes a
constant angle with it, the locus of NV is a spiral similar to, and therefore equal to,
the original spiral. Since angle ONP = «, PN is a tangent to this new spiral. But
it is also a normal to the original curve; therefore the new spiral is the evolute of

the original one, and N is the centre of curvature for the original spiral at P.
As shown on p. 84 for the cycloid, the arc of the evolute is equal to the difference

of the radii of curvature at its end-points. The length of the new spiral from N to
the pole (or as near to the pole as may be) is, therefore, equal to the difference
between NP and a quantity which may be as near to zero as we please. Thus we
may say that the length from N to O is NP, or ONsece. This agrees with the result
obtained above.

Fig. 76

Relation Between the Ratio & and Constant Angle
It is evident that there must be a relation between k& and «, since cither of these
quantities determine the shape of the curve. In particular cases it is easy to calcu-
late k£ approximately for any given value of «. For example, if « = 80°, suppose
that OP and OQ are radii 1° apart, with OQ greater than OP (Fig. 76). Let PM
be the perpendicular from P to OQ. Then PM = OPsin1°,and QM is approximately
OPsin1° cot80° = OP x0-003077. But OM = OPcos1°, = OP approx.

0Q = 1-003077 x OP approx. and OQ/OP = 1-003077.
[ 105]
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If the unit of angle is 10°, k = (1-003077) = 1-033. If it is one revolution,
k = (1-003077)%° = 3-022. (For reasonable accuracy in these results it is necessary
to use at least five-figure tables for the last stage of the calculation.)

The following table gives values of k and 1/k, for a unit of one revolution, for a
number of values of «:

o k 1/k
89° 1-17 0-896
88° 1-25 0-803
85° 1-73 0-577
80° 3-03 0-330
75° 5-38 0-186
70° 9-84 0-102
60° 376 0-0266
45° 535 0-00187
30° 53250 0-0000188

Fig. 77

**  To express this relationship algebraically it is necessary to use calculus. We draw

the figure (Fig. 77) with r increasing as 0 increases: k will then be greater than 1.
0 is now measured in radians. PM is drawn at right angles to OQ, angle POQ
being 60. OP = r and OQ = r+dr. Then MQ = dr approx., and PM = rd0
approx. Angle POM = a approx., and, in the limit, cota = dr/(rdf). Integrating

with respect to 6, log,r = Ocote + const.

If the initial value of r (i.e. the value when ¢ = 0) is r,, the constant of integration

is log,ro. Hence log,r = fcota+log,r,,
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which may be written as log,(r/re) = Ocota,

or r = ryefcote

This last is the usual form of the polai equation of the equiangular spiral. The curve
is also called the logarithmic spiral because of the logarithmic form of the equation.

In these equations, 0 is measured in radians. To obtain the values of k£ mentioned
in earlier paragraphs it is only necessary to substitute for & the value, in radians, of
whatever is to be taken as the ‘unit of angle’. Thus for the table given on p. 106,
we substitute 27 for 0. Then k = r/r, = €*"cot*,

Further Drawing Exercises

1. Onradii drawn at 10° intervals mark distances from the pole proportional to
the antilogarithms of 0-00, 0-01, 0-02, .... (This is best done on polar graph paper,
the first point being plotted at a distance 10 cm. from the pole. When the curve has
been taken as far as possible in the outward direction, it may then be drawn
inwards as well by using the antilogarithms of 1-99, 1-98, 1-97, .... If ordinary
paper is used, the same scale is suitable.)

Calculate the value of k for one revolution of this spiral, and also the size of the
constant angle «. Check by measurement.

2. Draw the pedal or negative pedal of one of your spirals with respect to its
pole. (See pp. 153, 157).

Prove that the pedal or negative pedal of an equiangular spiral is an equal spiral.

3. Use dividers to measure radii in various directions on an ammonite or similar
fossil or shell. Draw a graph showing the logarithm of the radius as a function of
the angle.

If no suitable fossil or shell is available, the frontispiece of this book may be
used, or the figures in the following table:

o r
(degrees) (mm.)

0 81
45 90
90 10-3
135 11-4
180 13:0
225 150
270 17-2
315 20-0
360 221
405 24-5
450 270

Calculate the constant angle « for this spiral. (They are often about 85°.)
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4. Using radii at 30° intervals draw an equiangular spiral having a ratio k£ equal
to 2 for a unit of one revolution. (Hint: The ratio for a unit of 30° will be 2112
and its logarithm will be y;log2, i.e. 0-0251. From this, with the aid of anti-
logarithms, a table can be quickly compiled giving the lengths of twelve successive
radii, starting from any arbitrary value. For a second circuit it is only necessary
to double these values.) Label the successive radii according to the notes of a
musical scale, at semitone intervals, the ‘higher’ notes being towards the centre of
the spiral. The lengths of the radii will then be proportional to the lengths of a
vibrating string required to produce the corresponding notes (in equal-tempera-
ment tuning), each circuit of the spiral representing one octave. If the labelling is
done in the opposite direction, the lengths of the radii will be proportional to the
frequencies of the notes.

5. Plot the values used in no. 4 (or the lengths of successive radii of any other
equiangular spiral) as equally-spaced ordinates of an ordinary graph. The resulting
curve is the exponential curve and its chief property is that the gradient at any
point is proportional to the ordinate. Such curves are of considerable importance
in physics, illustrating for example the rate at which radium decays or the rate at
which an alternating current dies away when switched off. They can also be used
to represent the amount of a sum of money increasing at compound interest or
the ‘natural’ growth of a population. An approximate method for drawing these
curves without using tables is given on p. 122.

The Equiangular (or Logarithmic) Spiral: Summary

** 1. The polar equation is r = ae’cot=,
2. ¢ = a. (The curve makes a constant angle with the radius vector.)
3. A line through the pole meets the curve at distances in geometric progression,
the common ratio being as given in the table on p. 106.
4. The pedal equation is p = rsinc.
The length of the arc (measured from the pole) is rseca.
p = rcosece.
The evolute is an equal spiral.
The inverse with respect to the pole is an equal spiral.
9. The pedal and negative pedals with respect to the pole are spirals equal to the
original curve.
10. The caustic, with radiant point at the pole, is an equal spiral.
11. If the curve is rolled along a fixed straight line, the locus of the pole is a
straight line.
12. If any part of the curve is enlarged or reduced in any ratio, it becomes
congruent to another part of the same spiral.
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The equiangular spiral was first considered in 1638 by Descartes, who started
from the property s = a.r. Torricelli, who died in 1647, worked on it independently
and used for a definition the fact that the radii are in geometric progression if the
angles increase uniformly. From this he discovered the relation s = a.r; that is to
say, he found the rectification of the curve. John Bernoulli, some fifty years later,
found all the ‘reproductive’ properties of the curve (as, for example, nos. 7, 8,
9,10, 12, above); and these almost mystic properties of the ‘wonderful’ spiral made
him wish to have the curve incised on his tomb: Eadem mutata resurgo—° Though
changed I rise unchanged’.
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THE LEMNISCATE OF BERNOULLI

To Draw a Lemniscate (First Method)
Draw a circle, centre C, and mark a point O whose distance from C is 4/2 times the
radius (Fig. 79). Through O draw any straight line cutting the circle at 0, Q’. On
this line mark points P and P’ at distances from O equal to QQ’. Repeat for many
positions of the line. The locus of P and P’ is the lemniscate.

Fig. 79

Suitable Dimensions
The circle should be near the middle of the right-hand edge of the paper, with O

to the left of it. Radius (= %a) oC (= %a\/z)

Paper: 1, 1-5in. or 4cm. 2-12 in. or 5-66 cm.
2, 2in. Scm. 2-83in.  7-07 cm.
3, 25in. 6cm. 3-54in. 848 cm.

To Draw a Lemnsicate (Second Method)
In Fig. 80, with O and C as before, OC is produced to S, so that OC = CS = }a,/2.
A line is drawn through S parallel to QO, and perpendiculars PR, ON, P'R’ are
drawn to it from P, O, P'. CM is the perpendicular from C to OQ. Then

NR = OP = Q'Q =20'M and ON = 2CM.
[111]

Fig. 78. The rectangular hyperbola and the lemniscate of Bernoulli
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Therefore, the right-angled triangles ONR, CM Q' are similar, and
OR = 2CQ’ = a.
Hence R, and similarly R’, lie on a circle whose centre is O and whose radius is a.
The lemniscate may therefore be drawn as follows:
Draw a circle, centre O, and mark a point S whose distance from O is /2 times

the radius. Place two set squares as shown in Fig. 81, so that OP and RS are
parallel. If R lies on the circle, the locus of P will be the lemniscate.

Fig. 80

Suitable Dimensions

The circle should be in the middle of the paper and its radius (a) should be double
that of the circle used in the first method. OS should be double the length given
for OC.

The Lemniscate as a Pedal Curve

The line PR (Fig. 81) touches a rectangular hyperbola whose centre is O, .S being
one focus. (See p. 25.) P is thus the foot of the perpendicular from the centre of
the hyperbola to a tangent. The lemniscate is, therefore, the pedal of a rectangular
hyperbola with respect to its centre.

To Draw a Lemniscate (Third Method)

Draw a rectangular hyperbola and let its centre be O. With any point T on the
hyperbola as centre and with radius 70O draw a circle. Repeat many times for
different positions of 7. As P varies, the envelope of this circle is the lemniscate
(Fig. 78).
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Suitable dimensions: The base-circle of the hyperbola should have radius as
given for the First Method, the distance from the centre O to the focus S being
that given for OC.

Proof: If the circles whose centres are at points T,¢ on the hyperbola intersect
at P (Fig. 82), triangles OTt and P"Tt are congruent and P” is the image of O in
the chord ¢T. As t approaches 7, the chord becomes a tangent and P” becomes a

Fig. 81

point on the envelope. If OP” cuts the tangent at P, the locus of P is a lemniscate
(being the pedal of a rectangular hyperbola with respect to its centre), and that of
P” is a similar curve on double scale.

Polar Equation of the Lemniscate
In Fig. 80, let OP be r and let angle SOP be 6. Then ON = OSsinf = ay/2sin6,
and r? = OP? = NR® = OR*—ON?
= a?—24*sin%0
= a?cos20.

This is the polar equation of the lemniscate.
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Exercises

1. To draw a lemniscate (fourth method). Draw two circles of radius g, their
centres C, C’ being a distance a,/2 apart. Find points M, M’, one on each circle,
such that MM’ = a,/2, and MM’ is not parallel to CC’ (Fig. 83). Mark the mid-

Fig. 82

point P of MM’. The locus of P is a lemniscate. (This method is that of the linkage
shown in Fig. 84.)

Suitable Dimensions

CC’ (= ay2) Radius CM (= a)
Paper: 1. 3in.or 8cm. 2-12 in. or 5-66 cm.
2, Sin. 12cm. 3-54in. 848 cm.

3, 6in. 14 cm. 424in. 99cm.

[114]



THE LEMNISCATE OF BERNOULLI

2. The lemniscate as the inverse of a rectangular hyperbola. Draw a rectangular
hyperbola with centre O (see p. 26). Draw a straight line through O, meeting the
hyperbola at Q, and mark on it a point P such that OP.0OQ = k?, k being a
constant. Then the locus of P is a lemniscate. (This may be proved from the polar
equation of the rectangular hyperbola r?cos26 = g% See p. 32.) The points P
may be determined either by using a table of reciprocals or by the following
construction:

Draw any convenient circle not passing through O. On this circle find a point
F such that OF = OQ. Let OF cut the circle again at E. Then OP = OE.

M

Fig. 83

Suitable dimensions: If a table of reciprocals is used, it is convenient for k* to
be 10 sq. units. The semi-axis of the hyperbola may then be 2 cm. (on small paper)
or 2 in. (on larger paper).

If the geometrical construction is used, the hyperbola may be any size; the circle
may conveniently be drawn to occupy most of the space between O and one corner
of the paper.

3. Prove that, in Fig. 79, triangles OCQ, CPQ are similar.

(Hint: QP.QO0 = 0Q’'.0Q = square on tangent from O = QC%)

Hence prove that CP/OC = CQ/0Q, and similarly that CP'/OC = CQ’/0Q’. Use
these facts to prove that CP.CP’ = OC?, and hence that, if C’ is a point on CO
produced, such that CO = OC’, then PC.PC’ is constant. (The lemniscate may
thus be defined as the locus of a point the product of whose distances from two fixed
points is equal to the square of half the distance between them.)
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** 4. In Fig. 83, use Apollonius’ Theorem to prove that CM'? = 2CP? and

C’'M* = 2C'P?; then use Ptolemy’s Theorem to prove that
CM'.C'M = a°
Hence prove that CP.C'P = 1a®> = OC2

The Lemniscate: Summary
1. The polar equation (with pole at the centre) is r> = a2cos20.
2. The Cartesian equation is (x2+ %)% = a?(x2— y?).
3. The bipolar equation is rr’ = a2

Fig. 84
4. The pedal equation is r3 = a’p.
5. ¢ =20+1n.
6. ¥ = 30+1in.
7. A =a®

8. p = +a?(3r).

9. The lemniscate is the cissoid of a circle with respect to a point whose distance
from the centre is /2 times the radius.

10. It is the pedal of a rectangular hyperbola with respect to its centre.

11. It is the inverse of a rectangular hyperbola with respect to its centre.
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In 1694 James Bernoulli published an article in the Acta Eruditorum on a curve
‘shaped like a figure 8, or a knot, or bow of a ribbon’, for which he used the Latin
word lemniscus (‘a pendent ribbon, fastened to a victor’s garland’). He was not
aware that this curve was a special case of a Cassinian Oval (see p. 187), and he did
not investigate its geometrical properties; the main interest was analytical, and the
investigations on the length of arc of the curve laid the foundations of the later
work on elliptic functions.
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THE TRACTRIX AND CATENARY

To Draw the Tractrix and Catenary

Draw a base-line across the foot of the paper and mark points on it at equal
intervals, beginning at the left-hand margin and continuing as far as the middle of
the paper. Number these points 0, 1, 2, 3, ..., from left to right. Through points
1,3,5, ..., drawn lines at right angles to the base-line. (These will be called ‘vertical
lines 1, 3, 5, ...".) With points 0, 2, 4, ..., as centres draw quadrants of circles of
fixed radius ¢, as shown in Fig. 85. (These will be called ‘quadrants 0, 2, 4, ...".)
On the vertical line 1 choose a point P; and from it draw tangents P,T;, and P,T,
to quadrants O and 2 respectively. With P, as centre, draw an arc from Ty to 7.
Let P,T, cut the vertical line 3 at P,. With centre P; draw an arc from 7, to meet
quadrant 4 at 7. Joint P37, cutting vertical line 5 at P;; and so on.

The arcs joining T, T, Ty, ..., will form a curve approximating to a tractrix, and
the points Py, P, P;, ..., will lie approximately on a catenary.

Suitable Dimensions

The paper may be placed either way. The intervals between the points 0, 1, 2, ...,
may conveniently be 0-2 in. or 0-5 cm. The point P; should be as far from the base-
line as possible. The point T, must be accurately determined, either by using the
Euclidean construction for the first tangent or by drawing a perpendicular from the
centre 0. If P,T, is beyond the stretch of the compasses, P,T, should be made
equal to P,T, and T,T, joined by a straight line or a freehand curve.

When the tractrix has been continued until it meets the catenary (at a point 4
distant ¢ from the base-line) the vertex of both curves has been reached. A line
drawn through this point at right angles to the base-line is an axis of symmetry for
both curves and should be used as such for drawing the other half of each of them.

Geometrical Properties

If the complete circles, of which quadrants 0 and 2 are parts, were drawn, they
would intersect at points R and S on the vertical line 1. Then P,7;* = P,R.P,S
(tangent and secant theorem) = P, T,2. Therefore, P,T, = P,T,. By the same
theorem, P,T, is a tangent to quadrant 4; and so on. Therefore the curve
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T,T,T, ..., as drawn, crosses each of the quadrants at right angles. The tractrix is
in fact the curve which cuts at right angles all the circles, of constant radius, whose
centres lie on a straight line. The above method of drawing the curve will be the
more accurate as the intervals between the points 0, 1, 2, ..., are made smaller.
The lines P, T,, P,T,, P;T,, ..., are normals to the curve as drawn; and in the
limit, as the intervals between the points 0, 1, 2, ..., are made smaller, they become

Y
P
A
T
/
N 0 X
Fig. 86

normals to the tractrix and tangents to the catenary. The catenary is in fact the
evolute of the tractrix. In Fig. 86, PT is a normal to the tractrix and a tangent to
the catenary; PN is drawn perpendicular to the base-line and angle PTN is a right
angle.

Length of arc of the catenary. In Fig. 85, the sum of the lengths P, P;, P;P;, ...,
as far as the vertex, is equal to P, T,. In the limit, PT (Fig. 86) is equal to s, the
length of the arc PA. If the base-line is taken as axis of x, and the axis of symmetry
as axis of y, PN? = PT?+ NT? i.e. y® = s®+c% The length of the arc from P to the
vertex is, therefore, /(y2— c?).
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Gradient. The gradient, tanyr, of the catenary at P is equal to tanPNT = s/c,
s being taken as positive when x is positive.

Intrinsic equation. The equation s = ctanyr is known as the intrinsic equation of
the catenary.

Experiments

1. The tractrix. Attach a small object to the end of a string whose length is a
convenient multiple of the length ¢ in your drawing. Place the object on a hori-
zontal table in such a position that the string just reaches to one edge of the table.
Move the free end of the string along that edge and mark with chalk the path which
the object follows. Compare the curve so formed with the tractrix as previously

drawn.
o A

ws

Fig. 87

Proof: If T is the object and N is the free end of the string (Fig. 86), the object
always moves in the direction TN, 1.e. at right angles to a circle whose centre is N
and whose radius is the fixed length NT. The locus of T is therefore a tractrix as
previously defined. (It is from this property that the name tractrix is derived.)

2. The catenary. Measure, in your drawing, the distance x from P; to the axis
of symmetry; also the distance s from P, to T;. Take a uniform flexible chain whose
length is a convenient multiple of 2s, and hang it freely with its ends on the same
level at a distance apart which is the same multiple of 2x. Measure the width at
different heights and compare with your drawing,.

**  Proof: Let the weight of the chain be w per unit length. Let T be the tension at
any point P where the gradient is ¥y and the arc-length from the vertex is s (Fig. 87).
Let the tension at the vertex be 7,. Considering the equilibrium of the portion of
chain from P to the vertex, we have

(resolving horizontally) Tcosy = T,
(resolving vertically) Tsinyr = ws.
tany = ws/T,.
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This is the intrinsic equation of the catenary, and may be written in the form
s = ctanyr, where ¢ = T,/w.

3. Comparison of the catenary and the parabola. Near the vertex, the catenary
is indistinguishable from a parabola, the focus of the parabola being a point S
on OY such that 04 = 24S. Use the method described on p. 3 to draw this
parabola.

It is to be noted that the parabola is the curve formed by the chains of a sus-
pension bridge, where light cables support a uniform heavy roadway. The distri-
bution of weight is then uniform per horizontal unit of length. In the catenary
formed by a hanging chain the distribution of weight is uniform per unit of arc-
length. In large suspension bridges the chains may weigh as much as the roadway;
the curve they form is then something between a catenary and a parabola.

Cartesian Equation of the Catenary
**At any point of the catenary

dx c
'd; =COt1ﬁ=}

Integrating with respect to y,

c

~ VR
x = cch™(y/c), ie.y = cch(x/c).

Further Drawing Exercises

1. The catenary from tables. Use a table of hyperbolic cosines to plot a catenary,
taking the same value of ¢ as in your original drawing. Compare the results of the
two methods.

2. The exponential curve. Draw a base-line across the foot of the paper and mark
points on it at equal intervals k. Through each of these points draw a line at right
angles to the base-line. (These lines will be called ‘vertical lines’.) Choose any one
of the marked points as origin and label it ‘0’, the points to the right of it being
called 1, 2, 3, ..., and those to the left —1, —2, —3, .... On the vertical line 0 mark
a point P, whose distance from the point 0 is 2-5k. Join the point —2 to P, and
produce this line to meet vertical line 1 at P;. Join the point —1 to P; and produce
to meet vertical line 2 at P,. Join the point O to P, and produce to meet vertical
line 3 at P;; and so on. The points Py, Py, P,, ..., will lie on an exponential curve.
Points to the left of the origin may be found by joining P, to the point — 3, cutting
vertical line —1 at P_,; and so on.

Suitable dimensions. A sheet of ordinary ruled paper may be used, in the
‘landscape’ position, with the ruled lines serving as ‘vertical lines’. The point 0
should be taken rather to the right of the middle of the paper. k may be 0-4 in.

[122]



THE TRACTRIX AND CATENARY

Check by use of tables: Take the base-line as x-axis and the vertical line O as
y-axis, with OP, (i.e. 2:5k) as unit of measurement on both axes. The equation of
the curve as drawn is then y = (2:756)*. 1f the curve y = e® is plotted from tables,
it will lie close alongside.

3. The catenary in relation to the exponential curve. Draw an exponential curve
y = e® and also its mirror image in the y-axis (y = e~*). On each vertical line mark
the mid-point of the segment cut off from that line by the two curves. These mid-
points will lie on a catenary.

The Catenary: Summary
** 1. The intrinsic equation is s = ctany.
2. The Cartesian equation is y = cch(x/c).
3. s = csh(x/o).
4. y® = s®+c2
5. p = csec?y = +y?c.
6. The catenary is the form assumed by a uniform flexible chain hanging freely
under gravity.
7. It is the locus of the focus of a parabola which rolls on a straight line.
8. It is the evolute of a tractrix.

The Tractrix: Summary
¥* (X, ¥y, s, p', ¥ refer to a point on the tractrix, the plain letters being used for the
corresponding point of the catenary.)
1. Parametric equations are
x" = clog (secyy +tany) —csiny,

y' = ccosy.

2. The Cartesian equation is + x’ = cch=(c/y") —/(c2—y?.

3. ¥ =¥ +90° (the + or — sign being taken according to whether x’ is —
or +).
p’ = |s| = |ctany| = |ccoty’|.
s" = —clogsin|{’'| = clog(c/y").
The evolute is a catenary.
The x-axis is an asymptote.

8. The length of the tangent, from the point of contact to the asymptote, is
constant.

9. The area between the curve and its asymptote is 37702 (This may be proved
by considering that the area swept out by the tangent is f tatdy.)

10. The tractrix is the orthogonal trajectory of a set of circles, of constant radius,

whose centres lie on a straight line.

Now ks
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11. It is the path of an object dragged along a horizontal plane by a string of
constant length when the other end of the string moves along a straight line in the
plane.

12. It is an involute of the catenary.

Galileo’s suggestion that a heavy rope would hang in the shape of a parabola was
disproved by Jungius in 1669, but the true shape of the ‘chain-curve’, the catenary,
was not found until 1690/91, when Huygens, Leibniz and John Bernoulli replied
to a challenge by James Bernoulli. David Gregory, the Oxford professor, wrote a
comprehensive treatise on the ‘catenarian’ in 1697. The name was first used by
Huygens in a letter to Leibniz in 1690.

The problem of the tractrix (see no. 11, above) was proposed to Leibniz by a
French doctor. Leibniz found and used the property no. 7; Huygens not only
solved the immediate problem (and gave the curve its name), but he succeeded in
generalizing it.

When the tractrix is rotated about its asymptote it generates a surface of constant
negative curvature; this property enabled Beltrami (1868) to construct a model of
hyperbolic non-euclidean geometry, in which a ‘plane’ is represented by this
surface. Incidentally, if a is the length of the tangent (no. 8, above), the solid of
revolution has volume and surface area equal respectively to the volume and
surface area of a sphere of radius a.

** The tractrix has been proposed (by Schiele) as the ideal form for a bearing
supporting a revolving shaft which exerts on it a considerable longitudinal thrust
(i.e. a thrust parallel to the axis of rotation). Suppose that, in Fig. 86, the base-
line represents the axis of rotation and the area between it and the left-hand portion
of the tractrix represents a half-section of the end of the revolving shaft. It is
desirable that the effect of wear on the bearing should be to shift the whole curve
a small distance &/ to the left. The movement in the normal direction at T will be
dlsinyr, where ¥ is the angle ONT. The work done in causing such wear on any
small area 04 of the bearing is then proportional to 4 .48/sinyr. But this is equal
to the work done against friction on that area, namely up.0A4.2my per revolution,
where 4 is the coefficient of friction, p is the normal pressure (supposed uniform)
and y is the distance of T from the base-line. It follows that, to obtain the desired
distribution of wear, y should be proportional to siny, i.e. ycosecys should be
constant, as in fact it is for the tractrix and for no other curve.
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PART 11

WAYS OF FINDING
NEW CURVES

Many of the curves discussed in the preceding chapters were drawn from
a base-line or a base-circle, and sometimes other curves such as the para-
bola or hyperbola were used. The strophoid, for example, was drawn first
by using a straight line and a point (the first and second methods); then
by using a parabola (the envelope method); and finally by using a circle
and its diameter (the ‘cissoid’ method). It has also been seen that any
curve has its evolute, and its pedal or negative pedal with respect to a given
point. Curves have been obtained too by rolling circles along lines or other
circles, and by sliding set squares against fixed points or along fixed lines.

These and other methods of obtaining new curves will now be con-
sidered. The reader will often be able to recall the use already made of
a method and will then be able to use it to draw new curves. There is no
end to the number and variety of plane curves: many are well known and
and have been studied in detail; others are known, while their geometrical
properties remain undiscovered; and there are many more which have yet
to be drawn for the first time.
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CONCHOIDS

Definition
Let S be any curve and let 4 be a fixed point. If a straight line is drawn through 4
to meet S at Q, and if P and P’ are points on this line such that

P'Q = QP = k (constant),

the locus of P and P’ is called a conchoid of S with respect to A.

The conchoid of a circle with respect to a point on its circumference is the
limagon (p. 45). If the fixed distance is equal to the diameter of the circle, it is the
cardioid (p. 36).

The Conchoid of Nicomedes

This is the conchoid of a straight line with respect to a point not on the line. Three
cases arise, with the fixed distance less than, equal to or greater than the distance
from the point to the line. The last of these is shown in Fig. 88, with A the fixed
point and LQ the fixed straight line.

The polar equation, with A as pole and the perpendicular AL from 4 to the fixed
line as initial line, is r = asecl + k, a being the length of AL.

This conchoid can be used for trisecting an angle, as follows: In Fig. 88, suppose
that AQ = $QP. Let QR be drawn parallel to AL, meeting the outer branch of
the conchoid at R; and let AR cut the fixed line at U. Then angle RAL = } of angle
QAL. (Hint for proof: Join Q to the mid-point of UR.) Hence the following
method:

If BAC is the given angle, draw any line LQ at right angles to 4B, cutting AC
at Q. Draw ON parallel to LB. Let the conchoid of LQ with respect to 4,
with fixed distance equal to 2x AQ, cut QN at R. Then angle BAR = % of
angle BAC.

(In practice it is not necessary to draw the conchoid, but only to place a ruler so
that its edge passes through 4 and makes an intercept equal to 2 x 4Q between
QL and ON.)

The curve may be drawn mechanically, by means of a ruler PP’ which is made to

[127]
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pass through a fixed point 4, its mid-point Q moving along a fixed line LQ. The
ends P and P’ then describe the curve. The instantaneous centre is the point where
a line through A perpendicular to the ruler meets RQ produced, and the normals
at P and P’ must, therefore, pass through this point.

Other Conchoids

The following are suggested for drawing:

1. The conchoid of a circle of radius a with respect to a point within it at a
distance b from the centre (i) with the fixed distance between (a — b) and a, (ii) with
the fixed distance equal to a.

2. The conchoid of a lemniscate with respect to its centre, the fixed distance
being equal to the distance from the centre to the furthest point of the
curve.

3. The focal conchoids of the conic sections. (In these conchoids the outer branch
is of little interest, having roughly the same shape as the original conic; but the
inner branch takes various forms according to the magnitude of the fixed distance.
Thus, for the parabola, if the distance from the focus to the vertex is a, the form
varies according to whether the fixed distance is (i) less than g, (ii) equal to q,
(1ii) between a and 2a, (iv) equal to 2a, or (v) greater than 2a4. For the ellipse, if
A’A4 is the major axis, with C the centre and S the focus nearer to 4, and SL the
semi-latus-rectum, the two principal forms occur (i) when the fixed distance is
between SA and SL, or between CA and SA’, (ii) when it is between SL and
CA.)

The Conchoid of Nicomedes: Summary

** 1. The polar equation is r = asecf+k. (It is not necessary to write +k, since
points on the inner branch are given by values of 6 between 90° and 270°.)
2. The Cartesian equation is k2x% = (a—x)2(x2+y%). (When k < g, this
equation includes an isolated point at the origin.)
3. The asymptote is x = a.
4. If k > a, there is a node at the origin;
if k = a, there is a cusp;
if k < a, there is neither.
5. The gradient at the node is given by cosyr = *alk.
6. Area of loop

2
= ay(k*— a®) — 2aklog %) t krcos1 Y

k+J(k*—
a k

(The area between either branch and the asymptote is infinite.)
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7. The normals at P and P’ (Fig. 88) pass through the point where a line through
A perpendicular to AP meets RQ produced.

The invention of the conchoid (‘mussel-shell shape’) is ascribed to Nicomedes
(second century B.C.) by Pappus and other classical authors; it was a favourite with
the mathematicians of the seventeenth century as a specimen for the new method
of analytical geometry and calculus. It could be used (as was the purpose of its
invention) to solve the two problems of doubling the cube and of trisecting an
angle; and hence for every cubic or quartic problem. For this reason Newton
suggested that it should be treated as a ‘standard’ curve.

: [129] Le
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CISSOIDS

Definition
Let S and S’ be any two curves and let 4 be a fixed point. A straight line is drawn
through A cutting S and S” at Q and R respectively, and a point P is found in the
line such that AP = QR, these lengths being measured in the direction indicated by
the order of the letters. Then the locus of P is called the cissoid of S and S’ with
respect to A.

Thus the cissoid of two concentric circles, radii ry, r,, with respect to their common
centre is a circle with the same centre and radius |r;—r,|.

The Cissoid of Diocles

This is the cissoid of a circle and a straight line touching it, with respect to the point
on the circumference of the circle diametrically opposite to the point of contact.
In Fig. 89, 4 is the fixed point, S and S’ are the circle and the tangent at B, and
AP = QR.

This curve may be used for finding two mean proportionals between two given
lengths. In Fig. 89, OU is the first of two mean proportionals between OC and OL;
or, if the circle is of unit radius, the measure of OU is the cube root of that of OL.
(Hint for proof: Let AO be a and let angle OAP be 0. Express coordinates of U,
P and L in terms of a and 6.)

For other properties of this curve, see the summary given below.

Other Cissoids

1. The oblique cissoid. The cissoid of a circle and a straight line touching it,
with respect to a point on the circumference not directly opposite the tangent, is
again a curve having a cusp at the given point, with the given straight line as
asymptote; but the curve now crosses the asymptote.

2. The cissoid of a circle and a straight line not a tangent, with respect to a
point on the circumference, is a curve which has a node and loop if the straight line
cuts the circle. If the straight line passes through the centre of the circle, it is a
strophoid. (See p. 95.)

[131] -
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3. The cissoid of two intersecting straight lines with respect to a point not on
either of them is a curve of one branch having asymptotes parallel to the given
lines.

4. If a line through a fixed point 4 meets a curve S in two points Q and R,
a cissoid of S with respect to 4 may be drawn. (The two curves S and S’ are now
replaced by two parts of the curve S.) Q and R are interchangeable, so the method
is to mark on the variable line two points P and P’ such that P’A = AP = QR. The
curve thus obtained will have central symmetry about 4. The lemniscate was drawn
in this way (p. 111). The cissoid (in this sense) of a parabola with respect to a point
outside it not on its axis is a double S-shaped curve; while that of a cardioid
with respect to a point on its axis produced is a figure-of-eight curve with two
cusps.

The Cissoid of Diocles: Summary
** 1. The polar equation (pole at A, initial line AB) is
r = 2a(secl—cosf) or r = 2asin?6/cosd.
2. Parametric equations, using ¢ for tan6 as parameter, with 4 as origin and AB
as axis of x, are 2a? 2af®

*Tire VT 1ae

3. The Cartesian equation (with the same axes) is
y¥(2a—x) = x8.

4. The asymptote is x = 2a.

5. The area between the curve and its asymptote is 3ma?®.

6. The cissoid is the inverse of the parabola y* = 8ax with respect to the origin
(radius of inversion 4a).

7. It is the pedal of the parabola y? = —8ax with respect to the origin.

8. It is the negative pedal of a cardioid with respect to the point opposite the
cusp-point. (See pp. 155, 157.)

9. It is the locus of the vertex of a parabola which rolls on an equal fixed
parabola, starting from the position in which the vertices coincide.

10. If a set square moves as in Fig. 65 (p. 92), the locus of the mid-point of
PQ is a cissoid.

The name cissoid (‘ivy-shaped’) is mentioned by Geminus in the first century
B.C., that is, about a century after the death of the inventor Diocles. In the com-
mentaries on the work by Archimedes On the Sphere and the Cylinder the curve is
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referred to as Diocles’ contribution to the classic problem of doubling the cube.
In Fig. 89, if OC = a and OL = 2a then OU?® = 2a3.

The mathematicians of the seventeenth century tried their skill on the cissoid.
Fermat and Roberval constructed the tangent (1634); Huygens and Wallis found
the area (1658); while Newton gives it as an example, in his Arithmetica Universalis,
of the ancients’ attempts at solving cubic problems and again as a specimen in his
Enumeratio Linearum Tertii Ordinis.
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STROPHOIDS

Definition

Let S be any curve and O a point (called ‘the pole’) and 4 another point (called
‘the fixed point’). Then if a variable line through O meets the curve S at Q, and
points P, P’ are marked on it such that P’Q = QP = QA, the locus of P and P’
is called the strophoid of S with respect to the pole O and the fixed point A.

The Right and Oblique Strophoids

These are strophoids of a straight line with respect to a pole not on the line, the
fixed point being on the line. For the right strophoid the fixed point is the foot of
the perpendicular from the pole to the line. (See ch. 10.)

Freeth’s Nephroid

This is the strophoid of a circle with respect to its centre as pole, the fixed point
being on the circumference (Fig. 90). The polar equation, with O as pole and 04
as initial line, is r = a(l+2sin30).
The curve can be used for describing a regular heptagon as follows: Let the per-
pendicular bisector of OA4 meet the outer branch at A and let OH meet the base-
circle at Q. Then angle AOH = 2 x 180° and angle QA0 = %x180°. (Hint for
proof: Call angle AOH 6 and use three isosceles triangles.)

Other Strophoids

The following are suggested for investigation:

1. The strophoid of a straight line with respect to a pole at a distance a from the
line, the fixed point being on the perpendicular from the pole to the line (produced
beyond the line), at a distance from the line (i) less than g, (ii) equal to a, (iii) greater
than a.

2. The strophoid of a circle with respect to a point on the circumference, the
fixed point being the diametrically opposite point.

[135]
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3. The strophoid of a circle of radius a with respect to its centre, the fixed point
being at a distance from the centre (i) less than g, (ii) between a and 2a, (iii) equal
to 2a, (iv) between 2a and 3a, (v) greater than 3a.

4. The strophoid of a cardioid with respect to the point opposite the cusp-point
as pole, with the fixed point at the cusp.

5. The strophoid of a rectangular hyperbola with respect to the centre as pole,
with a vertex as the fixed point.

Freeth’s Method for the Regular Nonagont

Let AB be the base of an equilateral triangle ABC. Let Q be any point on BC
produced and let 40 be joined and produced to P, so that QP = QB. Then the
locus of P is part of an oblique strophoid. If the perpendicular bisector of 4 B meets
the locus of P at P,, and AP, is joined, the angle BAP, is 80°. From this an angle of
40° can be found and the regular nonagon constructed. (Hint for proof: Call
angle BAP, 0 and use isosceles triangles.)

If the complete strophoid is drawn, the perpendicular bisector of AB meets it at
three points, the corresponding values of angle BAP being 80°, 20° and —40°.

Freeth’s Supertrisectrix

This is the strophoid of a trisectrix with respect to the centre of the base-circle as
pole and the node as fixed point. Let the trisectrix be drawn asin Figs. 29, 30 (p. 45),
with O as centre of the base-circle and A as pole, QP and QP’ being equal to QO.
OP is now joined and produced both ways. Points R and R’ are found on this
line such that PR = PR’ = PA. The locus of R and R’ is the supertrisectrix, a
closed curve having an outer loop and four inner loops. The four inner loops inter-
sect at O, which is thus a quadruple point. The node of the trisectrix, 4, is a
quintuple point.

This curve may be used for drawing a regular undecagon. If the perpendicular
bisector of A0 meets the outer branch at a point R;, corresponding to P, on the
trisectrix and Q, on the base-circle, the angle AR,0 will be ¥ of 180°. For, if this
angle = 6,

P,R, = P A, . angle AR, = 6 and angle OP,4 = 20;
0.P, = 0,0, .. angle P,OQ, = 20 and angle 00,4 = 40;
00, = 04, .. angle OAQ, = 40 and angle OAR, = 50;
R A = R0, .. angle AOR, = 50.

Hence, in triangle OAR;, the base angles are each five times the vertical angle.

1 T. J. Freeth, Proc. Lond. Math. Soc. vol. X (1879).
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If the perpendicular bisector of 4O meets the five branches of the curve at R;,
R,, R3, R, and R;, in that order, the vertical angles of the triangles so formed are,
respectively, %, ¥, 71, 11 and 75 of 180°; and the base angles are, respectively,

s s 11
5 4 3 2 1 o
T 11> T 11 and ¢t of 180°.

p—t

Strophoids with the Pole at Infinity

Let S be a given curve and A4 a fixed point, as before. From any point Q on S a
line is drawn parallel to a given fixed direction and points P and P’ are marked on
it such that P'Q = QP = QA. Then the locus of P and P’ is the strophoid of QO
with respect to the given direction and the fixed point 4.

The strophoid (in this sense) of a straight line with respect to the perpendicular
direction and a fixed point not on the line is a rectangular hyperbola. That of a
circle, centre C, with respect to a fixed point 4 and the direction CA is a curve
consisting, in general, of two ovals. If A4 is inside the circle, the two ovals touch
each other; if 4 is outside, they are separate, but one of them takes a two-petalled
form; and if 4 is on the circumference, they unite to form a three-petalled curve
whose polar equation (with 4 as pole and AC as initial line) is

r = 4a cos 26 cos 0.
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ROULETTES

Definition

If a curve rolls, without slipping, along another, fixed, curve, any point or line
which moves with the rolling curve describes a roulette. The locus of a point
attached to the rolling curve is a point-roulette, and the envelope of a line attached
to the rolling curve is a line-roulette.

Fig. 92

Thus the cycloid is a point-roulette, since it is the locus of a point on the circum-
ference of a circle which rolls on a fixed straight line; and it has been shown, on
p. 86, that it may also be described as a line-roulette. If a circle rolls on the
outside or inside of a fixed circle, the roulette traced by a point on its circumference

[139]



A BOOK OF CURVES

is an epicycloid or hypocycloid. These curves are defined as point-roulettes, but it
may be shown that they are also line-roulettes, as follows:

Let P be a point on the circumference of a circle rolling on a fixed curve S
(Fig. 92). Let I be the point of contact and 10 the diameter through I. The arc IP
is equal to an arc /4 of the curve S, where 4 is a fixed point. Now consider the
circle whose centre is O and whose radius is OI. Let PO be produced to meet this
circle at L and M. Then arc IL = arc [P (radius double, angle at centre half).

Fig. 93

Therefore, if this new circle were rolled along S, L would eventually arrive at A.
It follows that LM is a diameter fixed relative to the rolling circle. Moreover, as
this circle rolls, its instantaneous centre is at I and, since angle IPO is a right angle,
P is the point of contact of LM with its envelope. The locus of P is, therefore, the
same as the envelope of LM.

Thus the point-roulette of a point on the circumference of a circle rolling along
any curve is the same as the line-roulette of the diameter of a circle of twice the
radius.
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To Draw any Hypocycloid
To draw a hypocycloid having (n+ 1) cusps, draw a circle, centre O, and a diameter
B'OB (Fig. 93). Draw radii OQ, OR, such that angle BOQ = ¢t and angle
B'OR = nt, these angles being measured in opposite senses. Join RQ. Then, as
t varies, the envelope of RQ will be the required hypocycloid.
Proof: If the radius of the original circle is (n—1)a, draw another circle with

Fig. 94

centre O and radius (n+ 1) g, cutting OB produced at 4. With centre Q draw a circle
of radius 2q, touching the second circle at I and meeting RQ produced at P. Then
arc IP = arc IA: for IP subtends an angle 4(n+1)¢ at the centre of a circle of
radius 2a and 74 subtends an angle ¢ at the centre of a circle of radius (n+1)a.
Therefore, if the circle whose centre is Q rolls round the inside of the circle whose
centre is O and whose radius is O4, P will always arrive at 4. Thus P is a fixed
point of the rolling circle and the diameter through P is a line carried by the rolling
circle. The envelope of RQ is, therefore, that of a diameter of the rolling circle and
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is the same as the locus of a point on the circumference of a circle of radius half as
great, i.e. of radius g, rolling on the same curve, namely the circle of radius (n+ 1)a.
This locus is a hypocycloid having (n+ 1) cusps.

To Draw Any Epicycloid
To draw an epicycloid having (m — 1) cusps, follow the same method with # changed
to —m (i.e. angle B'OR should be of magnitude m¢, measured this time in the same

Fig. 95

sense as angle AOI) (Fig. 94). The proof follows similar lines, the radius of the
original circle being now (m+ 1)a.

Various Values of » and m

When n = 1, the above construction fails. But, if a circle rolls on the inside of a
circle of radius twice as great, the locus of a point on its circumference is a straight
line. In Fig. 95, IP is drawn perpendicular to a diameter 4’4 of a fixed circle.
P then lies on the circle on OI as diameter, and arc IP = arc IA. Thus the two-
cusped hypocycloid is a segment of a straight line.

If the value of # is a rational fraction, (n+ 1) is still the ratio of the circumference
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of the fixed circle to that of the rolling circle; but, if (n+1) = p/q, where p and ¢
are integers prime to each other, there will be p cusps, produced in g revolutions of
the radius OI. The same is true for epicycloids if (m—1) = p/g. InFig. 91, m = 42,

Exercises

1. What curves correspond to the valuesn = 2, n =3, m =2, m = 37

2. Draw the curves corresponding to some other values, such asn = 4, n =

— — 9
m=4 m= 3.

[ST¥

’

L)

A

Fig. 96

Parametric Equations

In Fig. 96, J is the centre of a circle of radius a rolling on the inside of a fixed circle
whose centre is O and whose radius is (n+1)a. P is a point tracing a hypocycloid
of (n+1) cusps, starting at 4. Then, if angle AOI = ¢, arc PI = arc Al, and
angle PJI = (n+1)¢. Hence the inclination of JP to OA is —nt. With O as origin
and OA as axis of x, parametric equations for the hypocycloid are

X = nacost+acosnt, y = nasint—asinnt.
Corresponding equations for the epicycloid are

X = macost—acosmt, y = masint—asinmt.
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Fig. 97

Double Generation

* Every hypocycloid and every epicycloid can be generated as a locus in two ways.
Consider, in Fig. 97, the hypocycloid traced by the point P on the circle whose
centre is J and whose radius is a, as that circle rolls on the inside of the fixed circle
whose centre is O and whose radius is (n+1)a. Let IP produced meet the fixed
circle at I'; and let 'O meet PQ produced at Q’, and the fixed circle again at L.
Then the isosceles triangles /OI’ and IJP are similar; therefore JP is parallel to OI'.
It follows that triangles QOQ’ and QJP are similar, and hence that OQ’ = 0Q.
(Q’ 1s in fact the point previously called R.) .. I'Q' = (n+1)a+(n—1)a = 2na,
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a fixed length. A circle drawn on I'Q’ as diameter passes through P, its centre
being J', where OJ’ = a = JP; hence JPJ'O is a parallelogram. The arcs I'P, PI
and I'I all subtend equal angles at the centres of their respective circles and, as the
radii of the first two circles are together equal to that of the third, it follows that
arc I'P+arc PI = arc I'L.

Now P is a point fixed on the circumference of the circle whose centre is J. If it
eventually reaches the fixed circle at A4, the point of the other circle which was at P
must also arrive at 4. Therefore, P is a point fixed on the circumferences of both
the rolling circles and the hypocycloid is traced out in two ways.

It may be noted that I'4: A = n:1; and that, for the hypocycloid to be traced
simultaneously by the two methods, the angular velocities of the circles whose
centres are J and J' respectively must be in that same ratio. (Proof: If angles I'OA
and AOI are nt and ¢ respectively, JP must turn into the position OA, a turn of
amount nt; and J'P must also turn into the position OA, a turn of amount ¢.)

Evolute of the Hypocycloid

* Since [ is the instantaneous centre of one of the rolling circles, I'I is a normal to the
curve, and the evolute is the envelope of I'l. Let DD’ be a diameter of the fixed
circle such that angle AOD = 1/(n+1) x 180° and angle AOD’ = n/(n+1) x 180°
(D and I being on one side of 4, with D’ and I’ on the other). Then

angle I'OD’ = nxangle IOD;

and it follows that the envelope of I'l is a hypocycloid having (n+1) cusps (if
is an integer), DD’ being one of the cusp lines. The evolute is thus a curve similar
to the original hypocycloid, enlarged in the ratio OI: 0Q, i.e. (n+1):(n—1). (See
Fig. 98.)

Length of Arc

* Let a be the radius of the rolling circle and (n+ 1)a that of the fixed circle. Then, if
A is a cusp of the original curve and A" a cusp of the evolute, and if OA4’ meets the
original curve at M (Fig. 99),

2
04 = (n+1)a, 04’ = Z—i-—}OA - (’;fll) a and OM = (n—1)a.
2
Therefore MA" = OA'-0OM = (n+1) a—(n—1)a = ﬂ.
n—1 n—1

But the arc 4’4 of the evolute is equal to A’M. Hence the whole length of the
evolute (if n is an integer) is

2An+ 1)’%, ic. 8na .

The whole length of the original curve is therefore 8na (or 8qna if n = p/q).
10 [145] Lc



A BOOK OF CURVES

For an epicycloid, where a is the radius of the rolling circle and (m—1)a
that of the fixed circle, the whole length of the curve is 8ma (or 8gma, if m = p/q).

Area

* It is supposed that » and m are integers. In Fig. 97, P is a point on the hypocycloid
and PQQ’ is the tangent at P, cutting the inscribed circle at Q and Q’. If PI, the
normal, touches the evolute at E,

El _ PO _ P/ _ 1
=00 ~-00 " n-1

IP _JP 1
Also, Ir=or = ni
ElI n+1 El  n+1
Therefore, -I}*) = m and E‘,—‘P = “2‘;1‘—.

By the argument used on p. 60, the area between the evolute and the circle I'4]
is a fraction (n+ 1)%/(4n®) of the area between the two hypocycloids. If the area
of the original hypocycloid is S, that of the evolute is S(n+1)?/(n—1)2, and that
of the space between is 4nS/(n—1)2. Therefore,

(n+1)2 (n+1)? 4n S

\ASLELVIN 2,2 _
(n—1)2S m(n+1)2a 1>

whence S = ma?(n*—n).
By a similar method, or by changing n into —m, the area of the epicycloid is
ma¥(m?+ m).

The Prolate and Curtate Cycloids

If a circle of radius a rolls along a straight line, the roulette traced by a point
carried by it, distant 4 from its centre, is a prolate cycloid if h > a, and a curtate
cycloid if h < a. Parametric equations for these curves are:

X = at—hsint, y = a—hcost.
(Cf. the cycloid, p. 82.)
These curves may be drawn by suitable modifications of the methods used for the
cycloid (e.g. in the Second Method, all radii should be 4, while the intervals between

the points remain as 0-354). The prolate cycloid has a node and loop for every
revolution of the rolling circle.

Epitrochoids and Hypotrochoids

The term frochoid has the same meaning as roulette. It is used more particularly
for the roulettes traced by points carried by a circle rolling on a fixed circle. These
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Fig. 98

Fig. 99
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are called epitrochoids or hypotrochoids according as the circle rolls on the outside
or inside of the fixed circle.

Such curves can be drawn by extensions of the methods described on pp. 141, 142
for hypocycloids and epicycloids. In Fig. 97 it is necessary to find a point T on
JP (produced if necessary) such that JT = h. Hence the following method:

Draw a circle of radius na and a diameter U,0J,. From J, mark off points
J1, Ja, ..., on the circumference at 5° intervals. From U, mark U, U,, ..., at intervals
of 5n°, in the opposite sense to Jy, Js, ..., for a hypotrochoid, in the same sense as
Ji» Jo, ..., for an epitrochoid. Draw radii OU;, OU,, .... From J,, J;, J,, ..., draw
lines J, Ty, 1 T, J5 T, ..., of fixed length A, parallel to U, 0, U, 0, U,O0, ..., for a
hypotrochoid, or to OU,, OU;, OU,, ..., for an epitrochoid. Then (if » is an
integer), Ty, T3, T, ..., will lie on a hypotrochoid, having (n+1) loops if 4 > a; or
an epitrochoid, having (n—1) loops if & > a.

Parametric equations for the hypotrochoid are:

X = nacost+hcosnt, y = nasint—hsinnt;
and for the epitrochoid:
X = macost—hcosmt, y = masint—hsinmi.

It was shown (p. 48) that the limagon is an epitrochoid. The ellipse may be
regarded as a hypotrochoid, formed when the diameter of the rolling circle is half
that of the fixed circle. (Hint for proof: If the tracing-point P lies on a diameter
QQ’ of the rolling circle, Q and Q’ will describe two-cusped hypocycloids, i.e. dia-
meters of the fixed circle. Moreover, these diameters will be at right angles.
Hence P describes an ellipse, as in the Trammel Method, p. 19.)

The involute of a circle may be regarded as an epicycloid, and the Spiral of
Archimedes as an epitrochoid, when the radius of the rolling circle is infinite.
(Fig. 113, p. 173.)

Other Roulettes
To draw a roulette it is necessary to have some measure of the relative lengths of
arcs on the rolling curve and the fixed curve. For the epicycloids and hypocycloids
these lengths were compared by considering the angles subtended at the centres of
the circles; and the methods for drawing the curves were based on the relationships
of those angles. For the cycloid it was necessary to mark off some multiple of #
on the straight line along which the circle rolls. Not many other roulettes can be

easily drawn.
It has been mentioned (p. 123) that the point-roulette of the focus of a parabola,
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when the parabola rolls along a straight line, is a catenary. This can be proved by
the methods of the calculus, but a drawing cannot easily be made because there is
no convenient measure of the length of arc of the parabola.
It has been shown (p. 103) that the roulette traced by the pole of an equiangular
spiral, when the spiral rolls along a straight line, is another straight line.

C

Fig. 100

Drawing Exercises

1. If an arch of a cycloid is rolled along a straight line, the roulette of the mid-
point of the arch can be drawn. For suppose that the arc 44" (Fig. 100) is half of
a cycloidal arch and is the evolute of AC, another such arc. If PP’ is a tangent to
the one and a normal to the other, then PP’ = arc AP’; and the effect of rolling
the arc 44’ along the straight line AD’ is to bring PP’ into the position AE.
If AN is drawn perpendicular to PP’, and if AU, UV are drawn along and per-

pendicular to AD’, equal respectively to PN, NA, then V will be a point of the
roulette.
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Suitable Dimensions

With the paper in the ‘landscape’ position, place 4 rather below the centre of the
paper and draw two arches of the cycloid AC to the right of A. A large number of
positions of the line PI must be shown. The positions of V" may be quickly plotted
by placing a piece of paper with two of its edges along NP and NA, the lengths PN
and NA being marked on the paper and so transferred to the positions AU and UV.
The locus is a spiral, with its pole at 4.

If an existing drawing of one arch of a cycloid is used, the first half-turn of the
spiral can be drawn, provided there is space below A4’ equal to about three-quarters
of A'D’.

2. Draw a regular octagon ABCDEFGH, inscribed in a circle of diameter d.
Join AC, AD, AE, AF, AG. Draw the roulette of the point 4 when the octagon
rolls along a fixed straight line.

Suitable Dimensions
Diameter d

Paper: 1, 2in.or 6cm.
2, 3in. 8 cm.
3, 4in. 10cm.

The octagon should be placed near the top left-hand corner, orientated so that 4B
is its base. The fixed line for the roulette should be near the bottom edge of the
paper.

The roulette consists of seven arcs of circles (for one revolution of the octagon)
and may be drawn as follows: Mark points a,, b, ¢, d, e, f, g, h, ag on the fixed line
at intervals equal to AB. With centre b and radius ba,, draw an arc a;a, of 45°;
with centre ¢ and radius ca,, draw an arc a,a; of 45°; and so on.

It may be proved that the area between the seven arcs and the base-line is equal
to that of the octagon together with twice that of its circumscribing circle. (Hint:
The area is divided into six triangles and seven sectors of circles. The six triangles
are together equal to the area of the octagon. To prove that the seven sectors are
together equal to twice the area of the circle, note that

AB?*+ AF? = AC?+ AG? = AD*>*+ AH* = d*)

A similar result holds good from a polygon of 2n sides; and from this the area
under a cycloidal arch may be deduced.t For, if n is increased, the polygon
approximates more and more closely to a circle, and the roulette to a cycloid.
Hence the area under a cycloidal arch is three times that of the rolling circle.

+ W. Hope-Jones, Mathematical Gazetre, vol. X, p. 207.
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Hypocycloids and Epicycloids: Summary
1. For a hypocycloid: Let a be the radius of the rolling circle and (n+ 1) a that of
the fixed circle. With the centre of the fixed circle as origin and one cusp on the
x-axis, parametric equations are:

X = nacost+acosnt, y = nasint—asinnt.

2. For an epicycloid: Let a be the radius of the rolling circle and (m — 1) a that of
the fixed circle. With the centre of the fixed circle as origin and one cusp on the
x-axis, parametric equations are:

X = macost—acosmt, y = masint—asinmt.

3. The number of cusps is (n+ 1) or (m— 1), if these numbers are integers; but
if one of them is a fraction p/q, where p and ¢ are integers prime to each other,
there are p cusps obtained in g revolutions of the line of centres.

Some special cases:

n = 1. Segment of a straight line.
n = 2. Deltoid. m = 2. Cardioid.
n = 3. Astroid. m = 3. Nephroid.

4. L = 8na or 8ma, if n, m are integers; but 8gna or 8gma, if they are rational
fractions.

5. A = ma’(n*—n) or ma*(m®+ m), where n, m are integers.

6. The evolute is a similar curve, larger in the linear ratio (n+1):(n—1), or
smaller in the linear ratio (m—1):(m+1).

7. For the hypocycloid, the radius of the rolling circle may be either a or na,
that of the fixed circle being (n+ 1)a; and for the epicycloid the radius of the rolling
circle may be a or ma, that of the fixed circle being (m—1)a.

8. The hypocycloid is the envelope of a diameter of a circle of radius 24 rolling
on the inside of a fixed circle of radius (n+1)a; and the epicycloid is the envelope
of a diameter of a circle of radius 2a rolling on the outside of a fixed circle of radius
(m—1)a.

Roulette (‘shaped like a wheel’) was Roberval’s name for the cycloid, before
cycloid became universally accepted. Trochoid is the Greek word for ‘ wheel-shaped’.
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PEDAL CURVES

Definition of a Pedal Curve

If Sis any curve and O is a fixed point (called the pedal-point), the locus of the foot
of the perpendicular from O to a variable tangent to the curve is called the pedal
of S with respect to O.

The cardioid and limagon are pedals of a circle with respect to a point which does
or does not lie on the circumference. The pedal of an ellipse with respect to one of
its foci is the auxiliary circle (p. 13); the pedal of a rectangular hyperbola with
respect to its centre is a lemniscate (p. 112).

To Draw a Pedal Curve

If the original curve has been drawn as an envelope the pedal can at once be plotted
as a locus. (A set square may conveniently be used.) A curve geometrically similar
to the pedal curve may be drawn as an envelope, as follows: With centre at any
point Q of S, and radius QO, draw a circle: the envelope of such circles will be a
curve similar to the pedal curve, on double scale. This curve is called the orthotomic
of S with respect to O. The method was used for drawing the cardioid (p. 35), the
limagon (p. 49) and the lemniscate (p. 112).

It may be noted that, with the pedal-point as origin, the angle ¢ between the
radius vector and the tangent is the same for corresponding points of the pedal and
the original curve. (See p. 14.)

Rose-Curves

These are the pedals of the epicycloids and hypocycloids with respect to their
centres. If the original curve is a hypocycloid, there is one ‘leaf’ of the pedal
opposite each section (i.e. between each pair of adjacent cusps) of the original.

If the original curve is an epicycloid, the pedal is of the same nature, though
different in appearance. There is again one leaf opposite each section of the original
curve, but the leaf is 180° wider, in angular measure, than the corresponding section
of the original. The result is that adjacent leaves overlap each other. In the case of
a nephroid, each leaf is similar in appearance to a cardioid; and if the original
curve is a cardioid, the pedal consists of a single leaf so wide as to overlap itself.
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Other Pedal Curves

Pedals of the following curves are suggested for drawing:

1. The parabola with respect to its vertex (the Cissoid of Diocles).

2. The parabola with respect to the image of the focus in the directrix (the
Trisectrix of Maclaurin: see below).

Fig. 102. The parabola and the trisectrix of Maclaurin

The (ordinary) trisectrix (p. 46) with respect to the centre of its base-circle.
The (ordinary) trisectrix with respect to its node.

The cardioid with respect to its cusp-point (Cayley’s Sextic).

Epicycloids and hypocycloids with respect to their centres.

The deltoid with respect to various points on the curve or inside it.

N LA W

The Trisectrix of Maclaurin

* Let the focus and vertex of the parabola be S and A respectively, and let O and N
be points on the axis such that NO = 2a, 04 = AS = a (Fig. 102). Let Q be any
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point on the parabola such that the perpendicular NP from N to the tangent at Q
gives a point P on the loop of the pedal curve. Then angle ANP = % x angle AOP.
(Hint for proof: If the tangent at the vertex A4 is cut by PQ at R, SR is perpendicular
to PQ (p. 3). Moreover, O is equidistant from PN and SR; hence

OP = OR = RS.
Call angle ANP x.)

With O as pole and OA as initial line, the equation of the pedal curve (the
Trisectrix of Maclaurin) is r = asectf. At N the curve makes angles of +60°
with NO.

** The area of the loop is 34/3a% The inverse with respect to the node is a hyperbola.
The Cartesian equation, with N as origin and N4 as axis of x, is

(x+a)y? = x*(3a—x).

Some Curves and their Pedals

Curve Pedal-point Pedal
Circle Point on circumference Cardioid
Circle Any other point Limacon
Parabola Focus Straight line
Parabola Vertex Cissoid
Parabola Foot of directrix Right strophoid
Parabola Other point of directrix Oblique strophoid
Parabola Image of focus in directrix Trisectrix of Maclaurin
Ellipse or hyper-  Focus Auxiliary circle
bola
Rectangular Centre Lemniscate
hyperbola
Epicycloids and Centre Rose-curves
hypocycloids
Cardioid Cusp-point Cayley’s Sextic
(r® = dap? (r* = 4ap?®, or r = 4acos®}0)
Deltoid Cusp Simple folium or ovoid
(r = dacos®0)
Deltoid Vertex Double folium
(r = 4acos0Osin?0)
Deltoid Any other point on the curve Double folium (un-
symmetrical)
Deltoid Any other point on the inscribed Trifolium
equilateral triangle
Cissoid Point on axis, beyond asymptote, Cardioid

Equiangular spiral
Sinusoidal spiral
(rn+1 = anp)
Involute of
circle

whose distance from cusp is four

times that of asymptote
Pole
Pole

Centre of circle

[155]

An equal spiral

Another sinusoidal spiral
(r2n+1 = anpn+1)

Archimedian spiral
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NEGATIVE PEDALS

Definition

Let S be any curve and let O be a fixed point. If Q is a variable point on the curve
and a line is drawn through Q at right angles to OQ, the envelope of this line is
called the negative pedal of S with respect to O.

The parabola is the negative pedal of a straight line (p. 3); the ellipse and
hyperbola are negative pedals of a circle with respect to a point inside or outside
it (pp. 13, 25).

Other Negative Pedals

1. The negative pedal of a cardioid with respect to the point on the curve
directly opposite the cusp-point is the Cissoid of Diocles. (The distance of the
cusp-point of the cissoid from O is % as great as that of the cusp-point of the
cardioid.)

2. The negative pedal of the parabola with respect to its focus is Tschirnhausen’s
Cubic, also known as I’Hospital’s Cubic, or the Trisectrix of Catalan. (See below.)

3. The negative pedal of the ellipse with respect to its focus is an egg-shaped
curve if e < 4; but, if e > 1, it has a node and two cusps, as shown in Fig. 103.
In the special case e? = 1, illustrated in Fig. 103, the node is rectangular and the
distance between the cusps is equal to the maximum width of the other part of the
curve, both these distances being equal to half the major axis of the ellipse. (For
further details see the Mathematical Gazette, vol. XL1, p. 254.)

4. The negative pedal of the ellipse with respect to its centre is a curve having
two nodes and four cusps, provided e? > 4. It is known as Talbot’s Curve.

5. The negative pedal of a hyperbola with respect to its centre is a curve having
two nodes and two asymptotes at right angles to those of the hyperbola.

Suitable Dimensions Radius of Distance of
base-circle focus from centre

Paper: 1, 1lin. or3cm. 2in. or 6 cm.

2, 1-5in.  4cm. 3in. 8cm.

3p 2in. 5cm. 4in. 10cm.

The focus should be on a level with the centre.
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6. The negative pedal of a nephroid with respect to one of its cusp-points is a
curve having two cusps and one asymptote, shaped like a Greek letter €.

Tschirnhausen’s Cubic

Let the focus and vertex of the parabola be S and A4 respectively. If Q is a point on
the parabola, and P the corresponding point of the cubic (Fig. 104),

angle ASQ = % xangle ASP.

Fig. 104. The parabola and Tschirnhausen’s cubic

(Hint for proof: Let the tangent to the parabola at Q meet the axis at 7. Then
angle SPQ = angle SQT = angle STQ.)

With S as pole, and SA as initial line (so that angle ASP = 0), the polar equation
of the cubic is r = asec3(0/3). (Hint for proof: Use the same figure, with S4 equal
to a.)

The pedal equation, with S as pole, is ar? = p3.
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Some Curves and their Negative Pedals

Curve

Straight line
Circle

Circle

Circle, radius a
Parabola

Ellipse

Ellipse

Cardioid

Cardioid

Limacon
Equiangular spiral
Sinusoidal spiral
Archimedian spiral

Point

Point not on the line
Point inside

Point outside

Point distance a 4/2 from centre
Focus

Centre

Focus

Cusp

Point opposite cusp
Node or pole

Pole

Pole

Pole

Negative pedal

Parabola

Ellipse

Hyperbola
Rectangular hyperbola
Tschirnhausen’s cubic
Talbot’s Curve

Curve shown in Fig. 103
Circle

Cissoid

Circle

Equiangular spiral
Sinusoidal spiral
Involute of circle

The names Tschirnhausen’s Cubic and Cayley’s Sextic (p. 155) are due to R. C.
Archibald’s attempt to classify the curves in a paper published at Strasbourg in

1900.
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Fig. 105. Glissette of the mid-point of a rod whose ends slide
on a straight line and a circle
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GLISSETTES

Definition
When a curve, supposed rigid, slides against two fixed curves (i.e. when it is moved
so that it always touches the fixed curves), the locus of any point, or the envelope
of any line or curve, attached to the sliding curve is called a glissette.
If an ellipse slides against two fixed perpendicular lings, the locus of its centre is

Fig. 106

an arc of a circle (Fig. 106). (For it is a well-known property of the ellipse, which
may be proved or verified by drawing, that two tangents at right angles intersect at
a fixed distance from the centre.)

If a segment of a straight line slides against two fixed perpendicular lines, the
locus of its mid-point is a circle. This is easily proved independently, but it may
also be regarded as a special case of the preceding result, the segment being regarded
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as the limiting case of a very narrow ellipse. The locus of any other fixed point of
the segment is an ellipse (p. 19, Ex. 3, with P’ on PN produced); and the envelope
of the segment is an astroid (p. 53).

If a set square slides with two of its sides each passing through a fixed point, the
locus of the vertex in which those sides meet is a circle. (Here the sliding curve
consists of a pair of straight lines, and the fixed curves are reduced to points.) If
the sides each touch one of two fixed circles, the locus consists of four limagons
or two cardioids. (See p. 50.)

The right strophoid was drawn first as a glissette (p. 91), with a line and a point
sliding against a point and a line respectively.

Any conchoid may be regarded as a glissette, with a line and one of its points
sliding respectively against the given fixed point and the given curve.

Another special kind of glissette is produced when a curve moves so as to touch
a fixed curve at a fixed point. Here the ‘two fixed curves’ of the definition are the
fixed curve and the fixed point on it.

Other Examples

The following are suggested for drawing or investigation by other means:

1. The locus of the mid-point of a segment of a straight line whose ends move
on two intersecting lines not at right angles.

2. The envelope of the same segment of a line.

3. The locus of the mid-point of a segment of a straight line whose ends move
on two circles of equal radius (Watt’s Curve).

Note: If the centres are 4, B, the length of the segment should be (i) considerably
less than 4B, (ii) just less than 4B, (iii) equal to AB, (iv) greater than AB. The
method given on p. 114 for drawing the lemniscate was a particular case of (iii).

4. The locus of the mid-point of a segment of a straight line of which one end
moves on a straight line and the other on a circle, the length of the segment being
equal to the perpendicular distance of the straight line from the furthest point of
the circle (Fig. 105).

5. The envelope of the same segment of a line. This curve has two cusps and two
asymptotes, the curve approaching one end of each asymptote on both sides.

6. The locus of the mid-point of a segment of a straight line of which one end
moves on a parabola and the other on its directrix.

7. The envelope of a side of a triangle when the other two sides pass through
fixed points or touch fixed circles. This envelope is a circle whose centre may be
found as follows: Let the sides AB, AC of the triangle touch circles whose centres
are O, Q respectively (Fig. 107). Draw OA’ and QA’ parallel to BA and CA, to
meet at A’. Draw a line through A4’ parallel to BC to meet circle OQA’ at K. Then
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K is a fixed point and the perpendicular distance from K to BC is constant. (Hints
JSor proof: The circle OQA’ is fixed and angle OA4'K is constant. The distance from
K to BC is the same as that of 4’; but A’ is fixed relative to BC.)

Another method of proof is to locate the instantaneous centre, I, of the moving
triangle and to note that K7 is at right angles to BC. The point where BC touches
the envelope is the intersection of K7 and BC. BC always moves at right angles
to KI.

Fig. 107

8. The locus of the focus of a parabola which slides against two perpendicular
fixed lines. (Hint: Tangents to a parabola which are at right angles meet on the
directrix. The polar equation of this glissette, taking the point where the fixed lines
meet as origin, and one of them as initial line, is r = 2acosec?20.)

9. The locus of the focus of a parabola which touches a fixed line at a fixed point.
The polar equation, taking the fixed point as origin and the fixed line as initial line,
1s r = acosec?0.

** 10. Diirer’s ‘Conchoid’. In Diirer’s Underweysung der Messung, published at
Nuremburg in 1525, there is described a curve which he calls ein muschellini. 1t is
not, however, a conchoid in the sense defined above.

In Fig. 108, the numbers 1,2,3, ..., 16, are equally spaced, as units, along two axes
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at right angles to each other. The points with corresponding numbers are joined by
straight lines, each of which is produced to a total length of sixteen units. The curve
so formed is a small part of a quartic curve having two parallel asymptotes and two
finite nodes (or, we may say, three nodes, of which one is at infinity).

The complete curve may be drawn as follows: Let O and R be points (¢,0) and
(o,r) on the x- and y-axes respectively, such that g+r = 13. On QR, produced in

both directions, mark points P and P’ whose distances from Q are sixteen units.
The locus of P and P’ is the curve.

Suitable dimensions. It is desirable to show points on the x-axis from —25 to
+ 40, on the y-axis from —25to +25. For paper 1. the unit may be § in. or 3 mm.;
for papers 2. and 3, it may be 3 in. or 5 mm.

In Fig. 108 it will be seen that the envelope of the straight lines is a
parabola (see p. 7). The ‘conchoid’ is therefore a point-glissette, formed by a line
and one of its points sliding respectively against a parabola and one of its tangents.
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The equation of the quartic curve of which the ‘conchoid’ is a part may be found
by eliminating ¢ and r from

xlg+ylr =1, y*+(q—x)>=a*> and q+r =25,
where a = 16 and b = 13 for the particular case described by Diirer. The result of
the elimination is
2y2(x?+y%) — 2by*(x +y) + (b* — 3a®) y® — a*x* + 2a*b (x + y) + a*(a* - b?) = 0.

The asymptotes are y = +a/y/2.

Three special cases are of interest:

(1) If a = 0, the curve reduces to a pair of coincident straight lines, y? = 0;

(i) if b = 0, it reduces to a pair of parallel lines, y = *a/y/2, together with a
circle, x2+ )% = a%;

(i) if a = b, one of the nodes becomes a cusp, at the point (0, b).
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Fig. 109. Involutes of circles in the design of gear teeth
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EVOLUTES AND INVOLUTES

Definitions

If the normals at points Q and q of a curve meet at C, then the limiting position of
C, as g approaches Q, is called the centre of curvature of the curve at Q.

The locus of the centre of curvature, as Q varies on the curve, is called the evolute
of the curve. The original curve is called the involute of the new one.

The evolute may alternatively be defined as the envelope of the normal to the
curve; for C lies on two tangents to this envelope and, as they approach coinci-
dence, the limiting position of C is a point on the envelope.

Examples of Evolutes
Many examples have already been given, such as the evolute of the parabola
(Fig. 1) and that of the cycloid (Fig. 57). It has been shown (p. 105) that the evolute
of an equiangular spiral is an equal spiral; and the evolute of any hypocycloid
(p. 145) or epicycloid is a curve similar to the original.

Drawing of Evolutes
In the drawing of evolutes it is a help to know that the evolute passes through any
ordinary cusp-point of the original curve; that points of inflexion on the original
curve correspond to points at infinity on the evolute; and that points of maximum
or minimum curvature correspond to cusps of the evolute. (See Fig. 103.)

To draw an evolute it is necessary to have some means of drawing accurately a
number of normals to the original curve. Sometimes this can be done by a know-
ledge of the geometry of the curve as, for example, for the parabola (p. 7), and
the cycloidal curves (p. 145).

The evolutes of roulettes and glissettes can usually be drawn, because the position
of the instantaneous centre is known and the normal can therefore be drawn. This
applies to such curves as the right strophoid and all conchoids and negative pedals.

The following curves are suggested among those whose evolutes can be drawn:

1. The ellipse. With any point on the minor axis as centre draw a circle passing
through the foci, cutting the curve at P and the further part of the minor axis at G.
Then PG is a normal to the ellipse at P.
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2. The limagon. With the notation of Fig. 29 (p. 45) the instantaneous centre of
PP’, regarded as a moving rod, is on the base-circle, at the point I opposite to Q.
Hence IP and IP’ are normals.

3. The lemniscate. If the curve is drawn by the method of Fig. 83 (p. 115), the
instantaneous centre of MM’ is at the intersection of CM and C’'M’. The line
drawn from this point to P is a normal to the curve.

* 4. The right strophoid. The following method is suggested: Let OA4 and AD be
two lines at right angles, O being a fixed point about 2 in. from 4. With centre at
any point W on OA4 produced, and radius WO, draw an arc cutting AD at Q. With
the same radius, and centres at O and Q, draw arcs intersecting at T (so that OWQT

Involute

Evolute

Fig. 110

is a rhombus). Join WQ and mark off WP on it equal to WA. Join PT. Then
the locus of T is a parabola; that of P is a strophoid; and PT is a normal to the
strophoid. (Note: The position of W should be moved towards 4 and past A4, until
it is half-way between A4 and O; but, after it has passed 4, WP must be marked off
along QW produced.) (Hint for proof: In Fig. 66, p. 93, T is the instantaneous
centre of the moving set square.)

Involutes

Every example of an evolute is also one of an involute: thus the catenary is the
evolute of the tractrix and the tractrix is an involute of the catenary. The tangent to
the evolute is the normal to the involute, and its length, measured between the two
curves, is the radius of curvature of the involute (Fig. 110). As explained on p. 84,
the difference in length between two of these tangents is equal to the length of arc
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of the evolute, measured between their points of contact. The involute may thus
be thought of as the locus of a point of a string which is laid along the evolute and
unwrapped.

To Draw an Involute

The involute of a given curve may be drawn approximately as follows: Draw a
number of tangents to the given curve. With centre at the intersection of two

neighbouring tangents draw an arc, bounded by those tangents, passing through the
point of contact of one of them (Fig. 111). Repeat for the next pair of tangents,
using such a radius as will make the arcs join; and so on.

The error in this method is due to the fact that the length of arc of the original
curve is replaced by the sum of the segments of the tangents, which is necessarily
more than the true length of the arc. But the error can be made as small as we
please by taking the tangents near enough together.
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Involutes of the Circle

* This curve, shown in Fig. 111, is commonly used for the shaping of cog-wheels.
In Fig. 109, it is desired that two wheels, whose centres are at 4 and B, should
revolve as if the two pitch-circles, in contact at the pitch-point P, were rolling against
each other. QPRisdrawn ata convenient angle, usually 20°, to the common tangent
at P; Q and R being the feet of the perpendiculars from 4 and B. Base-circles are
drawn with centres 4 and B, radii AQ and BR. The profiles of the teeth are then
drawn as involutes of the two base-circles.

Suitable Dimensions

The radii of the pitch-circles may conveniently be in the ratio 4:3. The drawing
is made somewhat easier if the angle between QPR and the common tangent is
increased to 25°. To find the positions of successive teeth, mark off equal distances
along the pitch-circles. The tops of the teeth should be arcs of circles concentric
with, and slightly larger than the pitch-circles.

Proof: To see that, with the teeth in contact, the wheels will in fact revolve as
if the pitch-circles were rolling against each other, consider two points Q" and R’
which will move to the positions Q and R in the same interval of time. If the
tangents to the base-circles at O’ and R’ are Q'Y and R'Z,

Q'Y+ZR = QP+ PR.
But Q'Y =arcQ'Q+QP and ZR' = PR-—arc R'R(constr.).
Therefore arc Q'Q = arc R'R, and it follows that 0 and R move with equal

velocities. As the radii are in proportion, points fixed on the pitch-circles will
also move with equal velocities.

Parallel Curves

While every curve has but one evolute, it has many involutes; for the initial point,
where the involute cuts the original curve, may be chosen arbitrarily. The various
curves so obtained are called parallel curves. Any two of them are a constant
distance apart, the distance being measured along the common normal. The
involutes of a circle are all identical, but in other cases varying shapes are produced.
To draw curves parallel to a given curve it is only necessary to draw a number of
normals and to mark off equal distances along each of them.

Drawing of Involutes and Parallel Curves

It may be noted that, in drawing involutes, a cusp may occur either at the initial
point (i.e. the point where the involute meets the original curve) or at a point cor-
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responding to a point of inflexion of the original curve. In drawing a curve parallel
to a given curve, a cusp may be found at a point where the radius of curvature of
the original curve is equal to the constant distances between the curves.

The following are suggested for drawing:

1. An involute of the circle.

2. Involutes of the nephroid (i) with the initial point mid-way between two cusps,
(i) with the initial point at a cusp-point.

3. An involute of the lemniscate, with the initial point at one end of the trans-
VErse axis.

4. Curves parallel to the parabola, with the constant distance measured along the
inward normal and (i) equal to 2a (a being the distance from the focus to the
vertex), (i1) greater than 2a.

5. Curves parallel to the ellipse, with the constant distance measured along the
inward normal and (i) between b%/a and a?/b, (ii) greater than a?/b.

6. Curves parallel to the astroid, at varying distances.

Some Curves and their Evolutes

Curve Evolute
Parabola Semi-cubic parabola
Ellipse or hyperbola Lamé curves, (x/A)§i (y/B)§ =1
Cycloid An equal cycloid
Epicycloid or hypocycloid A similar epicycloid or hypocycloid
Cayley’s Sextic Nephroid
Equiangular spiral An equal spiral
Tractrix Catenary
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Fig. 112. A parabolic spiral
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SPIRALS

Definition
The word spiral, in its mathematical sense, means, properly speaking, a plane curve
traced by a point which winds about a fixed pole from which it continually recedes;
but the use of the word has been extended to other curves, for example the so-called
sinusoidal spirals, in which the tracing-point moves alternately towards and away
from the pole.

The Spiral of Archimedes
This is a true spiral, defined by the polar equation r = afl. It can be easily drawn
with the aid of polar graph paper. The successive whorls (i.e. circuits of the pole)

are spaced at equal intervals.
It may also be drawn by rolling one arm of a carpenter’s square along the
circumference of a fixed circle whose radius is equal to the inside edge of the other
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arm. Suppose that, in Fig. 113, P and Q have started from O and B respectively,
and that TQ = arc TB. Then Q describes an involute of the circle; and, since
OP = TQ = arc TB, OP is proportional to 6. Therefore P describes an Archi-
medean spiral. (If 6 is measured in radians, OP = a0, and the polar equation of
the spiral is r = a0.)

7

Fig. 114

As T is the instantaneous centre, the normal at P passes through 7" and can thus
be drawn.

Used as a cam, this curve converts uniform angular motion into uniform linear
motion. Fig. 114 shows the section of a heart-shaped cylinder in which each part
of the curve is an Archimedean spiral with O as pole. The follower F can move in
a vertical line through O. If the cam rotates about O with uniform angular velocity,
F will move in reciprocating motion with uniform velocity.
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Other Spirals of the Family r* = 4"0
These spirals are easily drawn on polar graph paper and several of them are of
interest.

Fermat’s spiral, r* = a*0. There are plus and minus values of r for any positive
value of @; the curve, therefore, has central symmetry about the pole.

The reciprocal (or hyperbolic) spiral, r@ = a. This curve has as asymptote a
straight line distant a from the pole (6 being measured in radians).

The lituus, r*0 = g®. The initial line is an asymptote. The curve may be defined
as the locus of a point P such that the area of the circular sector whose bounding
radii are OP and an equal length OQ along the initial line is constant.

If the curve is plotted for positive values of r only, the result is said to resemble
the volute in the capital of an Ionic column.

Other Spirals

The equiangular spiral. This has already been discussed (ch. 11).

The parabolic spiral, (r—a)? = b*0. If both values of r are plotted, an unending
curve is produced, the two parts of it crossing and recrossing each other an infinite
number of times (Fig. 112). (In drawing this curve any unit of angle may be chosen.
Convenient dimensions are given by a = 2, b = 1, unit of angle = 10°.) Fermat’s
spiral is a special case.

The sinusoidal spirals, r™ = a™cosnf. These are not true spirals, in that the
tracing-point does not continually recede from the pole. For different values of the
parameter n we obtain a family of curves which includes the lemniscate (n = 2), the
straight line (» = —1) and the rectangular hyperbola (n = —2). With fractional
values we have the cardioid (n = }), the parabola (n = —3}), Cayley’s Sextic
(n = %) and the Tschirnhausen Cubic (n = —1%).

** It may be proved by the methods of the calculus that the pedal equation of a
sinusoidal spiral is 7! = a"p; and hence that the pedal curve with respect to the
pole is another sinusoidal spiral, with its parameter n" equal to n/(n+1). Inter-
changing n and »’ it follows that the negative pedal of a sinusoidal spiral with
respect to its pole is another such curve, with parameter n/(1 —n).

Archimedes wrote a work On Spirals in which he proved that the polar sub-
tangent of a point on his spiral was equal in length to an arc of a circle. In Fig. 113,
if the tangent at P meets TO produced at L, the polar subtangent OL is equal to an
arc of a circle drawn with centre O from P to the point where it meets OA4 produced.
In this sense he rectified the circle.

Lituus is a shepherd’s (or a bishop’s) crook; Maclaurin used the term in his
Harmonia Mensurarum in 1722.
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Fig. 115. The deltoid and its inverse with respect to the mid-point
of one of its arcs
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INVERSION

Definition
Let S be a given curve and let O be a fixed point, with k a constant distance. If a
radius vector OP is drawn from O to the curve, and if P’ is a point on OP such that
OP.OP' = k?, then P’ is said to be the inverse of P with respect to O; and, if the
locus of P’ is a curve S’, then S’ is said to be the inverse of S with respect to O.

Fig. 116

It follows immediately that P is the inverse of P’, and .S of S’; the relationship is
a mutual one. It may also be noted that the constant k determines the size of the
inverse curve, not the shape. Variation of k would produce a set of similar curves.
The circle whose centre is O and whose radius is k is called the circle of inversion,
it is used in the geometrical theory of inversion but it is not of great importance for
Our purposes.
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Examples of Inversion

Several examples have already been given; e.g. the cardioid has been drawn as the
inverse of the parabola (p. 39) and the lemniscate as the inverse of the rectangular
hyperbola (p. 115). It can also be seen from Fig. 116 that the inverse of a straight
line is a circle through the centre of inversion: for, if OA is the perpendicular from
O to the line, and A4', P’ are the inverses of A, P respectively, then 4, A’, P’, P are
concyclic and angle OP’'A’ = angle OAP, a right angle. Therefore the locus of P’
is a circle on OA’ as diameter.

Fig. 117

Polar Equations

If (r, 0) are the polar coordinates of P, with O as pole, and (r', 0) are those of P’
then rr’ = k%; and, if the polar equation of S is written as r/k = f(0), that of S"is
kir = f(0).

For example, among the spirals, the inverse of the spiral of Archimedes, r = af),
is the reciprocal spiral 6 = a. In the same way the lituus and the spiral of Fermat
are inverse curves; and the sinusoidal spirals arrange themselves in pairs of inverse
curves, with » taking corresponding positive and negative values.

Drawing Inverse Curves

Method 1. Join points on the curve to the centre of inversion and use a table of
reciprocals to plot the inverse points.
Method 2. Draw the circle of inversion, centre O (Fig. 117). With centre at P on
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the given curve, and with radius PO, draw an arc cutting the circle at Q; with
centre Q and radius QO draw an arc cutting OP at P’. Then P and P’ are inverse
points.
(The method fails for points near O, but it can, if necessary, be applied in reverse:
i.e. given P’, draw the perpendicular bisector of OP’ to meet the circle at Q, and
that of OQ to meet OP’ produced at P.)

Fig. 118

Method 3. Draw a circle, of large radius, passing near O (Fig. 118). With centre
O and radius OP draw an arc to cut the circle at Q. Join OQ, cutting the circle
again at Q’. With centre O and radius OQ’ draw an arc cutting OP at P’. Then
P and P’ are inverse points.

B
Fig. 119

Note: Whatever method is used, it is helpful to know that the original curve and
the inverse make supplementary angles with any straight line through O.

Linkages for Inversion

Inverse curves may also be drawn by mechanical means:
1. Peaucellier’s cell. In Fig. 119, the eight lines represent rods freely jointed
together at their ends, OAO’B and PAP’B being rhombuses. If O is kept fixed,

[179] 12-2



A BOOK OF CURVES

P and P’ are inverse points with respect to O. (Hint for proof.: Consider the circle,
centre A and radius AP, cutting OA4 and OA produced at C and D. Then C and D
are at fixed distances from O and OP.OP’' = OC.0OD.)

Alternatively, if P is kept fixed, O and O’ are inverse points.

2. Hart’s linkage. In Fig. 120, ABCD is a ‘crossed parallelogram’ of jointed
rods (i.e. AB = CD and AD = BC). O, P, P’ are fixed points on the rods, dividing
AB, AD, CB respectively in the same ratio. If O is kept fixed, P and P’ are inverse
points with respect to O. (Hint for proof: OPP'is a straight line parallel to AC and
BD. Consider the circle APP'C cutting AB, produced if necessary, at K. Then
BP' .BC = BA.BK. .. BK is constant. Now consider OP.OP’))

Pairs of Inverse Curves

Centre of inversion

~A- Al
as point of as point of
First curve first curve second curve Second curve
Straight line Point not on the line Point on circum- Circle through the
ference point

Circle Point not on circumference Circle
Parabola Focus Cusp-point Cardioid
Parabola Vertex Cusp-point Cissoid of Diocles
Rectangular hyper- Centre Centre Lemniscate

bola
Rectangular hyper- Vertex Node Right strophoid

bola
Ellipse or hyperbola  Focus Pole, or node Limacon

(r = k—2acosb)

Hyperbola with Vertex Node Trisectrix of Mac-

asymptotes at 60° laurin

to transverse axis
Spirals (r* = a"f) Pole Pole Spirals (+"0 = a™)
Sinusoidal spirals Pole Pole Sinusoidal spirals

(r* = a™cosnf) (r* cosnt = a®)

[180]



INVERSION

Some Further Suggestions for Drawings

1. Inverses of the cardioid (i) with respect to the point of the curve directly
opposite the cusp, (i) with respect to the centre of the base-circle.

2. Inverse of the parabola with respect to the point of intersection of the axis
and the directrix.

3. Inverse of the lemniscate (i) with respect to one end of the transverse axis,
(ii) with respect to a point on the conjugate axis.

4. Inverse of the cissoid of Diocles with respect to a point not on its axis of
symmetry.

5. Inverse of the astroid with respect to one of its cusp-points.
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Fig. 121. The trisectrix, its evolute, and caustic with
radiant point opposite the node
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CAUSTIC CURVES

Definition

Let S be a given curve and let F be a fixed point called the radiant point. 1f rays
from F are reflected by the curve, the envelope of the reflected rays is called the
caustic of S with F as radiant point. Expressing this geometrically, let any line
through F meet the curve at Q and let QP be drawn so that QP and QF make
equal angles with the tangent to the curve at Q; then the envelope of QP is the
caustic.

This caustic by reflection is sometimes called the catacaustic, to distinguish it
from a curve similarly formed (the diacaustic) when the rays are refracted. Dia-
caustics will not be discussed here and the word caustic will be used to mean the
catacaustic.

The Drawing of Caustics

In general it is necessary to draw the normal (or the tangent) to the curve at Q. If
the image of F'in the normal (or the tangent) is joined to Q, this is the line QP whose
envelope is the caustic. If the curve S is a circle, however, use can be made of the
fact that equal chords drawn from a point on the circumference are equally inclined
to the radius.

The following examples are suggested for drawing:

1. The caustic of a circle with radiant point on the circumference. This is the
cardioid, as proved on p. 41 (see also below).

2. The caustic of a circle with radiant point at infinity. This is the nephroid, as
shown on p. 70.

3. The caustic of a circle with radiant point inside or outside the circle.

4. The caustic of a parabola for parallel rays perpendicular to its axis (Tschirn-
hausen’s Cubic).

5. The caustic of a cycloidal arch for parallel rays perpendicular to the base.
(In Fig. 57, p. 83, it can be seen that the reflected ray is the radius PO of the
rolling circle. See also p. 86, Ex. 2.)

6. The caustic of a cardioid with radiant point at the cusp. (In Fig. 24, p. 38,
PQ is the normal. If the tangent to the circle at Q is drawn first, and P found as
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the image of 4 in the tangent, the normal PQ can be accurately drawn. The resultant
caustic is a nephroid.)
7. The caustic of a cardioid with radiant point opposite to the cusp.

Fig. 122

The Caustic as an Evolute

* In Fig. 122, Q and q are points on the given curve and circles are drawn through F,
intersecting at F’, with these points as centres. By congruent triangles, F’ is
the image of F in Qg and, in the limit, as ¢ approaches Q, the image of F in the
tangent at Q to the given curve. F’, moreover, becomes a point on the envelope of
the circles, and F’'Q becomes a normal to this envelope. (It will be recalled that the
cardioid, for example, was drawn as an envelope in this way.) Now the locus of F”
is a curve similar to the pedal of the given curve with respect to F, but on double
scale. (This curve is called the orthotomic of S with respect to F.) F'Q is, therefore,

[184]



CAUSTIC CURVES

the normal to the orthotomic. But the envelope of F'Q is the caustic. Hence the
caustic is the evolute of the orthotomic.

The nature of certain caustics can be easily seen from this. For example, the
pedal (or orthotomic) of a circle with respect to a point on its circumference is a
cardioid; and the evolute of a cardioid is another cardioid; therefore the caustic
of a circle with radiant point on the circumference is a cardioid. Again, the pedal
of an ellipse with respect to its focus is a circle; and the evolute of a circle is a single
point, the centre. Hence the caustic of an ellipse with radiant point at a focus is a
single point (the other focus). By the same argument, the caustic of a rectangular
hyperbola with radiant point at its centre is the evolute of the lemniscate.

Some Curves and their Caustics

Curve

Circle

Circle

Parabola
Tschirnhausen’s Cubic
Cardioid

Deltoid

Cissoid

Cycloidal arch
Equiangular spiral

Rays

From point on circumference

Parallel

Perpendicular to axis

From pole

From cusp

Parallel (in any direction)

From point on axis (beyond asymp-
tote) whose distance from the cusp is
four times that of the asymptote

Perpendicular to base

From pole
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Caustic

Cardioid

Nephroid
Tschirnhausen’s Cubic
Semi-cubic parabola
Nephroid

Astroid

Cardioid

Two cycloidal arches
An equal spiral



Fig. 123. Cartesian ovals. 3r+2r' = 20,¢c = §
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BIPOLAR COORDINATES

Definition

If the distances of a point P from two fixed points O and O’ are r and r’ respec-
tively, then r and r’ are called bipolar coordinates of P. An equation connecting
r and r’ may define a locus and is then called the bipolar equation of the locus. If
the distance OO’ is c, the three lengths r, r’ and ¢ (which are all supposed positive)
must form a triangle; i.e. r+r" > cand —c <r—r' < c.

As P may be on either side of OO’, every locus defined by such an equation will
be symmetrical about OO’.

Examples of Bipolar Equations

The ellipse can be defined by the equation r+r’ = 2a; and the hyperbola by
r—r’ = +2a. It has also been shown (p. 116) that the lemniscate has the bipolar
equation rr’ = %a?% where 00’ = ay/2.

The Ovals of Cassini
These curves are defined by the bipolar equation rr’ = k2. Let OO’ = 2c. Then, if
k = ¢, we have the lemniscate as a special case. If k > ¢, the curve is a single oval;
if k < ¢, it separates into two. A convenient way of drawing the curve is to draw a
circle of radius ¢ and mark a point 4 outside it such that the tan gent from 4 to the
circle is of length k. If a line through A4 meets the circle at Q and Q’, then AQ and
AQ' are of length r and r’. (The extreme width of the oval, measured along its axis,
will be twice the distance from A4 to the centre of the circle.)
The normal may be drawn from the fact that, if C is the centre and P a point on
the curve, the normal and PC make equal angles with PO and PO".
**  Hint for proof: By applying the sine formula to triangles CPO and CPO’ it can
be proved that sin CPO

sin CPO’
If SPT is the tangent at P, and PG the normal,
sinGPO _ cosOPS
sinGPO' ~ cosO'PT"
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But cosOPS = dr|ds and cosO’'PT = —dr'[ds, and the ratio of these quantities
may be found by differentiating the equation rr’ = k2.

The Ovals of Descartes
* These curves are defined by the linear relations
mr+nr’ = k.

They occur in conjugate pairs, as indicated by the + sign. To draw them, it is
convenient to plot first the graphs of the straight lines mx + ny = k (Fig. 124a).
The coordinates (x, y) of any point on one of these lines give values of r and r’
satisfying the above equation, but the requirement that r, r" and ¢ (where OO0’ = ¢)
must be sides of a triangle restricts the choice to points within the rectangle marked

out by dotted lines. Let P be any such point. With O and O’ (Fig. 124b) as centres,
and with radii equal to the x- and y-coordinates of P respectively, arcs are drawn to

intersect at a point on the required curve.

It may be noted that points on the perimeter of the rectangle correspond to
points on the axis of symmetry of the curve; points on the short side to points
between O and O’, those on the other two sides to points on the left of O and on
the right of O’ respectively.

Focal Properties

** The polar equation, with O as pole and OO’ as initial line, is obtained by elimi-
nating r’ from the above equation and

r'? = r24+c%—2rccos0,
where angle O'OP = 6. The result, whether the plus or minus sign is taken, is
r2(m? —n?) + 2r(cn®cos 0 — km) + (k2 —n?c?) = 0.
The roots of this equation are the lengths of OP and OQ; these will be called r
and R respectively. To obtain an equation for the two points in which QO pro-
duced meets the ovals again it would be necessary to change ¢ into 180° —6. The
product of the roots, rR, is equal to (k?—n2c?)/(m*—n?), a constant, showing that

the two curves are inverses with respect to O.
If angle OO'P is called ¢, a similar elimination of r gives
r'(n®—m?) +2r'(cm?cos ¢ ¥ kn) + (k® —m?3c?) = 0.

The roots of this equation, which will be called " and R’, are the lengths of O'P
and O'Q’, where Q' is either the point where O’P meets the same oval again (e.g. the
inner oval in Fig. 124 ) or the point where PO’ produced meets the other oval of the
pair (e.g. the outer oval in Fig. 123). (This apparent anomaly is due to the fact that
cos ¢ changes sign for a radius drawn in the opposite direction.) The two cases are
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distinguished by the sign of the product r'R’. Fig. 124 is drawn with k/m < ¢ < k/n,
and both the products rR and r'R’ are positive. In Fig. 123, k/m and k/n are both
greater than c, with m greater than »; the product rR is again positive, but 'R’ is

negative.
Now let a circle be drawn through O, P and O’, meeting OO’ again at O” (the
inner oval in Fig. 123, the opposite side of the outer oval in Fig. 1245).

y /

OP=r,OP=r
2r+r =18
00 =C=12
Scale: 15 mm. to 1 unit.

Fig. 124

If O'Q is joined, triangles OPO” and OO’ Q are similar, and hence
or _0Q
00" 0Q°
But O’Q is related to OQ by the equation
m.OQ¥n.0'Q =k
(the upper sign being taken when Q is on the outer branch, as shown in both
diagrams).

o'P _n0Q _  mOQ—k_ +(’11_’f il
00"  n.0Q0 ~ n.0Q ~ ~\n nki-ni?
Hence r” and r are connected by a linear relation. Thus, if O and O’ are called foci
of the curve, O” is a third focus, in the sense that it could be used with O for
plotting the curve from a bipolar linear equation. The ovals shown in Fig. 123
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are in fact the same as those in Fig. 124 (but on a larger scale), the foci O’ and O”
being interchanged.

It follows, too, that there is a linear relation connecting r’ and r”, so the three
foci, O, O" and O” are on a par with each other. If the pair of ovals is regarded as
one curve, that curve can be inverted into itself with respect to any one of these foci.

Some Further Examples

1. The equation r = kr’ represents a circle; and, if k is varied, a set of coaxial
circles with limiting points at O and O’. (Hints for proof: Let the locus cut the
axis at 4 and A’. Then OAJ/AO’ = OP/PO’ = OA’'|O’A’ = k. Therefore PA and
PA’ are the bisectors of angle OPO’. For the second part, let CA = x and
CA’ = x'; prove that xx’ = Zc.)

2. The equation Ir?+mr'* = c? represents a circle whose centre Q divides 00’
in the ratio m:l. (Hint for proof: Apply the cosine rule to triangles OQP and
O'QP.) Consider the special cases | =m =1,/ =m =2and [/ = —m.

3. The equation r* = ncr’, where OO’ = c and n is positive, represents a set of
ovals. Plot these curves for n = %, 1, 2, 3, 4, 5 (¢ may conveniently be taken as
1 unit). Draw tangents from O’. Use the cosine rule to investigate further.

** 4. The reflecting property of the ellipse may be proved from the bipolar
equation r+r’ = 2a. If the angles made by the curve with OP and O’P are ¢
and ¢’ respectively (measured in opposite senses),

dr’

cosg = dr and cos¢’ = -

ds

But dr/ds+dr'|ds = 0; therefore ¢ = ¢'.

** 5. Prove the reflecting property of the hyperbola.

** 6. Prove that, for the ovals of Cassini, if lines drawn from O and O’ at right
angles respectively, to OP and O’P meet the tangent at P in the points T and T,
then TP = PT".

** 7. Let P be a point of the locus r = kr’. Use the method of no. 4 to prove that
lines drawn from O and O’ at right angles to OP and O’P respectively meet the
tangent at P at the same point. Hence find another way of proving the second
part of no. 1.

** 8. Magnetic lines. Suppose equal and opposite magnetic poles are at O and O'.
For lines of magnetic force, resolving along the normal, x sin ¢/r> —u sin ¢'/r'’? = 0.
If angle O'OP = 0 and angle OO'P = 6’, so that rsin 6 = r'sin &', prove that
cos @+cos 0" = constant.

For equipotential lines, since no work is done as a pole is moved along the
line, x cos ¢/r2—u cos ¢’/r'? = 0; therefore 1/r—1/r' = constant.
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Useful catalogues of curves and their properties, without proofs, are to be found in:

R. C. Archibald, Encyclopaedia Britannica, SPECIAL CURVES;
R. C. Yates, Curves and their Properties (Michigan, 1947).

The drawing of some of the curves, by geometrical and mechanical means, is dealt with in:
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Certain groups of curves are fully discussed in:

R. A. Proctor, The Geometry of Cycloids (London, 1878, out of print);
W. H. Besant, Roulettes and Glissettes (Cambridge, 1870, out of print).

Some treatment of curves will also be found in most calculus books, notably in:

J. Edwards, Differential Calculus (London, 1893);

H. Lamb, Infinitesimal Calculus (Cambridge, 1897);

C. V. Durell and A. Robson, Elementary Calculus, vol. i1 (London, 1934);

A. W. Siddons, K. S. Snell and J. B. Morgan, A New Calculus, Part m (Cambridge, 1952);
E. A. Maxwell, An Analytical Calculus, Vols. 1, i1 (Cambridge, 1954).

Special curves are treated more comprehensively, with historical notes, in:
G. Loria, Spezielle Algebraische und Transzendente Kurven (Leipzig and Berlin, 1902, out of
print);
F. G. Teixeira, Vols. v, v. Courbes Speciales Remarquables (Coimbre, 1907, out of print);
H. Wieleitner, Spezielle Ebene Kurven (Leipzig, 1908, out of print).

The tracing of curves from their equations is more fully dealt with in:
P. Frost, Curve Tracing (London, 1892).

The general treatment of plane curves by advanced methods will be found in:
G. Salmon, Higher Plane Curves (Dublin, 1879, out of print);
H. Hilton, Plane Algebraic Curves (Oxford, 1932, out of print);
E. J. F. Primrose, Plane Algebraic Curves (I.ondon, 1955).
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Abscissa. See Cartesian coordinates.

algebraic curve. One whose Cartesian equation is algebraic, i.e. can be expressed by rational
powers of x and y connected by the operations of addition, subtraction, multiplication and
division; e.g. ¥* = x/(x+y), but not y = 2%

analytical (or coordinate) geometry. The geometry of Descartes, in which a point is a pair of
numbers (x, ¥), and a curve is an equation connecting x and y. See Cartesian coordinates.

asymptote. The limiting position of a tangent to a curve as the point of contact moves indefinitely
far from the origin; see p. 25.

axes of coordinates. Fixed lines with reference to which the positions of points, lines and curves
are specified. See Cartesian coordinates.

Y

Fig. 125

axis of a curve. An axis of symmetry for the curve; i.e. a straight line such that, if P is any point
of the curve, the image of P in the line is another point of the curve.

bipolar coordinates. See p. 187.

Cartesian coordinates. Those invented by Descartes. The position of a point P in a plane is
related to two fixed axes, OX and OY (Fig. 125), the position being specified as (x, ),
where x is the distance NP measured parallel to OX, and y is the distance MP measured
parallel to OY. x is called the abscissa, or x-coordinate, of the point, and y is called the
ordinate, or y-coordinate. If the axes are at right angles, the coordinates are said to be
rectangular. The equation connecting x and y for points on a curve is called the Cartesian
equation of the curve.
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caustic. See p. 183.

cissoid. See p. 131.

conchoid. See p. 127.

conic sections. See p. 8.

curvature. Briefly, the circle of curvature at a point P of a curve is the circle that fits most closely
to the curve at that point. The centre of curvature and the radius of curvature are the centre
and radius of that circle. More accurately, if p is another point of the curve, and the normals
at P and p intersect at C, the centre of curvature at P is the limiting position of C as p ap-
proaches P; and the radius of curvature is the distance from P to that limiting position.

cusp. If we suppose that a curve is traced by a moving point, a cusp-point is one where the
moving point reverses its direction; and the form of the curve in such a neighbourhood is
a ‘cusp’; see Fig. 126, and Fig. 91, p. 138.

envelope. A curve touching every member of a system of lines or curves. See
p. 3.

evolute. The locus of the centres of curvature at points of a curve; alternatively,
the envelope of the normal to a curve. See Fig. 1, p. 2, and ch. 21, p. 167.

function. When a variable quantity y depends on another variable x in such a
way that for certain values of x there are corresponding values of y, then y is
said to be a ‘function’ of x. In Cartesian geometry this dependence may be
illustrated by the drawing of a graph, the resultant curve then representing
the functional dependence; e.g. the relationship y = x? is represented by the
parabola of which it is the Cartesian equation.

image. If the perpendicular PM from a point P to a given line / is produced
to P’ so that PM = MP’, P’ is called the ‘image of P in the line /’.

inflexion. A point of inflexion on a curve is one where the tangent crosses the
curve; e.g. in Fig. 56, p. 82, the dotted curve has points of inflexion where
it crosses the upper ‘horizontal’ line.

initial line. See polar coordinates.

instantaneous centres. See pp. 48, 55.

intrinsic equation. If s is the arc-length measured from a fixed point on a curve
to a variable point P, and ¥ is the inclination of the tangent at P, measured
from some fixed direction, the equation connecting s and ¥ is called the
‘intrinsic equation’ of the curve; e.g. p. 121.

inversion. See p. 177.

involute. See p. 167.

limit. If a variable point ¢ moves towards and closely approaches a fixed point Q; and at the
same time a point p, dependent on g, moves towards and closely approaches a fixed point P;
then P is said to be ‘the limiting position of p as ¢ approaches Q. E.g. in Fig. 3, p. 4,
P is the limiting position of both p and P’ as g approaches Q.

Similarly we may speak of the ‘limiting position of a line’, the ‘limiting magnitude of an

angle’ and so on.

locus. Briefly, the path of a moving point; more accurately, the set of all possible positions
which a point satisfying some condition can occupy.

negative pedal. If a curve S’ is the pedal of another curve S with respect to a point O, then .S
is said to be the negative pedal of S” with respect to O. See also p. 157.

node. A point where two branches of a curve cross.

normal. The normal at a point P of a curve is the line through P at right angles to the tangent
at P.

ordinate. See Cartesian coordinates.
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origin. The point of intersection of a pair of Cartesian axes.

orthogonal. Crossing at right angles; i.e. for curves, having tangents at right angles at the
point of intersection. An orthogonal trajectory is a curve crossing each of a given system of
curves at right angles. The orthogonal projection of a curve on another plane is the locus
of the feet of the perpendiculars from points on the curve to that plane.

orthotomic. The orthotomic of a curve with respect to a point F is the locus of the image of F
in tangents to the curve; see pp. 184, 153.

parameter. A number used to specify a point on a curve (or, sometimes, one curve of a system).
Often the Cartesian coordinates of the point are expressed in terms of a letter, say ¢, repre-

senting the parameter. These expressions are called the parametric equations of the curve.
E.g. p. 82.

Fig. 127

pedal curve. The pedal curve (or simply ‘the pedal’) of a given curve with respect to a point F
is the locus of the feet of the perpendiculars from F to tangents drawn to the given curve.
See p. 153.

pedal equation. If P is a point on a curve and O is a fixed point (called the ‘pole’), the length
OP is called r and the perpendicular distance from O to the tangent to the curve at P is
called p. The equation connecting p and r is variously described as the ‘pedal equation’
of the curve, the ‘tangential-polar equation’, or the ‘p, r equation’. See p. 15.

polar coordinates. The position of a point P in a plane may be specified by (7, ), where r is the
distance of P from a fixed point O (called the ‘pole’) and 6 is the angle made by OP with
a fixed line (called the ‘initial line’). The equation connecting » and 6 for points on a curve
is called the polar equation of the curve.

pole. A fixed point from which distances can conveniently be measured; usually in connection
with polar or pedal equations, but also for such curves as spirals (p. 173) and strophoids
(p. 139).

quadrature. Finding the area enclosed, or partly enclosed, by a curve. (Originally, drawing a
square equal to that area.)

radius vector. A line drawn from a pole O to a variable point P on a curve.

rectangular axes. See Cartesian coordinates.

rectangular hyperbola. A hyperbola whose asymptotes are at right angles. See p. 26.

rectification. Finding the length of an arc of a curve. (Originally, drawing a right, i.e. straight,
line equal in length to the arc.)

right circular cone. A cone on a circular base having its axis at right angles to the base.

similar. Figures are geometrically similar if to every point of one there corresponds a point of
the other, corresponding angles being equal and corresponding lengths in a constant ratio.
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spiral. See p. 173.

strophoid. See p. 135.

subtends. Is opposite to. More precisely, if P and Q are points of a line or curve, and A4 is
another point, not on the line or curve, the angle PAQ may be described as ‘the angle
subtended at 4 by PQ’.

symmetry. A curve is said to be symmetrical about a line (the axis of symmetry) if the image in
that line of every point on the curve is another point of the curve.

A curve is said to be symmetrical about a point (the centre) if the image in that centre

of every point on the curve is another point of the curve.

tangent. The tangent at P to a curve is the limiting position of a chord Pp, as p approaches P.
P is called the point of contact of the tangent (Fig. 99).

touch. A line and a curve are said to touch each other if the line is a tangent to the curve.
Two curves are said to touch each other if they have a common point and a common tangent
at that point.

transcendental. A transcendental curve or equation is one which is not algebraic; e.g. y = 2%,
y = sinx.

variable. A variable point is, briefly, a movable point; more accurately, it is a set of points
satisfying some condition. A ‘variable line’ is similarly defined. In algebra, a letter such
as x, which may have various numerical values, is called a ‘variable’.

vertex. A point, other than a node, where a curve crosses an axis of symmetry. See pp. 4, 96.
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APOLLONIUS (?265-170 B.C.),
sections, 9, 33

ARCHIMEDES (287-212 B.C.), Greek, spirals,
173, 175

Greek, conic

Barrow, 1. (1630-77), English, calculus, ix
BELTRAMLI, E. (1835-1900), Italian, tractrix, 124
BerNouLLI, JAMES (1654-1705), Swiss, cate-
nary, 124, cycloid, 89, lemniscate, 111
BerNoOuULLI, JOHN (1667-1748), Swiss, cate-
nary, 124, equiangular spiral, 109
BriancHoON, C. J. (1785-1864), theorem, 20

CASSEGRAIN, J. (. 1672), telescope, 33

Cassing, G. D. (1625-1712), Italian (born in
France), ovals, 187

CaTtaLAN, E. C. (1814-94), Belgian, trisectrix,
46f., 157, 158

CAVALIERIL, B. (1598(7)-1647), Italian, inte-
gration, ix

CAYLEY, A. (1821-95), English, sextic, 155, 159

DESARGUES, G. (1593-1662), French, cycloid, 89

DEscARTES, R. (1596-1650), French, coordi-
nate geometry, 10, 192, cycloid, 88, equi-
angular spiral, 109, ovals, 188

DiocLEs (second cent. B.C.), Greek, cissoid, 131

DURER, A. (1471-1528), German, conchoid,
163, limagon, 49, 51

EucLip (c. 300 B.c.), Greek, conic sections,
9, 33

FErRMAT, P. DE (1601--65), French, cissoid, 133,
cycloid, 88, spiral, 175

FreetH, T. J. (1843-1904), English, nephroid,
135, 71, supertrisectrix, 136

GALILEO, G. (1564-1642), Italian,catenary, 124,
cycloid, 88, projectiles, 10

GEeMINUS (c. 70 B.C.), Greek, cissoid, 132

GREGORY, D. (1661-1708), Scottish, catenary,
124

GREGORY, J. (1638-75), Scottish, calculus, ix,
telescope, 10, 22

HarT, H. (fl. 1875), linkage, 180
HEeURAET, H. vaAN (1633-7), Dutch, semi-cubic
parabola, 11

HuyGHeNs, C. (1629-95), Dutch, catenary,
124, cissoid, 133, cycloid, 89, tractrix, 124

KEPLER, J. (1571-1630), German, orbits, ix, 22

LA Hirg, P. DE (1640-1718), French, cardioid,
43

LALOUERE, S. (1600-64), French, cycloid, 88

LaME, G. (1795-1870), French, Lamé curves,
171

L’HospitaL, A. F. DeE (1661-1704), French,
cubic, 157, 158

LEemBNIZ, G. W. (1646-1716), German, astroid,
61, catenary, 124, tractrix, 124

MACLAURIN, C. (1698-1746), Scottish, gravi-
tation, 22, lituus, 175, trisectrix, 46f., 154
MEeNAEcHMUS (fl. 360 B.c.), Greek, conic

sections, 9, 33
MOoRLEY, F. (1860-1937), English, triangle, 72,
78

NEILE, W. (1637-70), English, semi-cubic para-
bola, 11

NEWTON, 1. (1642-1727), English, cissoid, 133,
conchoid, 129, orbits, 22, telescope, 10

NiIcoMEDES (c. 200 B.c.), Greek, conchoid, 127

Parpus (¢. A.D. 300), Greek, conchoid, 129,
conic sections, 10

PascaL, BLAsE (1623-62), French, conic
sections, 10, cycloid, 88, hexagon, 19, 22

PascaL, ETIENNE (1588-1651), French, lima-
¢on, 51

PEAUCELLIER, A. (fl. 1864), French, linkage,
179

PROCTOR, R. A. (1837-88), English, nephroid,
71, 191

PTOLEMY (secondcent. A.D.), Greek, epicycles, ix

RAMANUIJAN, S. (1887-1920), Indian, ellipse, 18

RoBERVAL, G. P. DE (1602-75), French, cissoid,
133, cycloid, 82, 88, 151, strophoid, 97,
tangents, 51

SimMsoN, R. (1687-1768), English, Simson’s
line, 76, 7, 72
STEINER, J. (1796-1863), Swiss, deltoid, 79
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TaLsot, H. F. (1800-77), English, Talbot’s WaLLIs, J. (1616-1703), English, cissoid, 133,

curve, 157 conic sections, 10, cycloid, 88, equiangular
ToRrICELLI, E. (1608-47), Italian, cycloid, 88, spiral, 103f.

equiangular spiral, 109, strophoid, 97 WATT, J. (1736-1819), Scottish, Watt’s curve,
TSCHIRNHAUSEN, E. W. v.(1651-1708), German, 162

cubic, 157, 158 WREN, C. (1632-1723), English, cycloid, 88
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The letter G suggests reference to the Glossary, S to the summaries at the
ends of chapters. Numerals refer to pages.

Algebraic curves, G, ix, 191
Astroid, 52-61, 150, 185
Asymptotes, G

Auxiliary circle, 17

Bipolar coordinates, 187-90
Brachistochrone, ix, 88

Cardioid, 35-43, 150, 155, 159, 175, 180, 185

Cartesian equations, G, S

Catacaustic, 183

Catenary, 119-24

Caustic curves, 183-5, ix

Cayley’s sextic, 155, 159, 171, 175

Chain, hanging under gravity, 121, 122, 124

Circle, S, 190: involute of, 170, 148, 155

Cissoid, 131-3, 155, 159

Conchoid, 127-9, ix, 162: Diirer’s, 163

Conic sections, 9

Conjugate axis, 25

Cubic, of Tschirnhausen (or I’Hospital), 157,
158, 175, 185

Curvature, G, 58, S

Cusp, G

Cycloid, 81-9, 183, 191: curtate, 147; prolate,
147

Deltoid, 73-9, 150, 155, 176, 185
Diacaustic, 183

Diameter, 6, 21, 32

Director circle, 21, 32

Directrix, 5, 10, 15, 28
Duplication of cube, 9, 129, 133

Earth, form of, 22

Eccentricity, 14, 22, 25, 26

Ellipse, 13-23, 9, 128, 148, 155, 159, 180, 190
Elliptic functions, 18, 117

Envelope, G

Epicycles, ix

Epicycloid, 37, 63, 66, 138, 142 f., 150, 153, 191
Epitrochoid, 48, 147

Equiangular spiral, 99-109, frontispiece
Evolute, G, S, 167-71, 184

Exponential curve, 108, 122

Films, 38 n., 78
Focus, 5, 10, 14, 15, 28, 188
Folium, 155

Gear wheels, design of teeth for, 89, 170
Glissette, 161-5, 191

Hyperbola, 25-33, 9, 155, 159, 180, 190:
rectangular, 26, 32, 116, 175, 180, 185

Hypocycloid, 56, 73, 141 £., 150, 153: Steiner’s,
79

Hypotrochoid, 147

Image, G

Inflexion, G

Instantaneous centre, 48, 55

Intrinsic equations, G, S

Inversion, 177-81, 190

Involute, 167-71: of circle, 170, 148, 155
Isochrone, 86

Lamé curves, 171

Latus rectum, 17, 29

Lemniscate of Bernoulli, 111-17, 175
Limagon, 45-51

Linkages, 114, 179, 180, 191

Lituus, 175, 178

Locus, G, ix

Logarithmic spiral. See Equiangular

Magnetic curves, 190

Major axis, 13

Mechanical methods, ix, 19, 30, 91, 112,
114, 121, 127, 139-51, 161-5, 179, 180,
191

Minor axis, 13

Morley’s triangle, 78

Musical scale, 108

Negative pedals, 157-9

Nephroid, 63-71, 150, 171:
71

Node, G, 96

Normal, G, 167

Notation, xii

Freeth’s, 135,
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Orbits, ix, 22

Orthogonal projection, G, 21

Orthogonal trajectory, G, 123

Orthotomic, G

Ovals, of Cassini, 187, 190: of Descartes,
188

Ovoids, 155, 157

Paper, size of, xii

Parabola, 3-11, 122, 128, 155, 158, 180, 183
Parabola, semi-cubic, 7, 10, 185

Parallel curves, 170

Parametric equations, G, S

Pedal curves, G, 153-5

Pedal equations, G, S, 175

Polar equations, G, S

Pole, G

Projectiles, 10

Quadrature, G
Quadrifolium, 152

Rectangular hyperbola, 26, 32, 116, 175, 180,
185

Rectification, G, 11, 175

Regular polygons, drawing of, 47, 135, 136

Rose-curves, 153

Roulettes, 139-51, 191

Schiele’s bearing, 124

Semi-cubic parabola, 7, 11

Simson’s line, 76, 7

Spirals, 173-5, 180: of Archimedes, 173, 148,
155, 159; equiangular (or logarithmic), 99—
109; of Fermat, 175, 178; parabolic, 172,
175; reciprocal, 175, 178; sinusoidal, 175,
155, 180

Strophoid, 135-7; oblique, 95, 155; right, 91-7

Supertrisectrix, 136

Suspension bridge, 11, 122

Talbot’s curve, 157

Tautochrone, 85, 88

Telescope, 10, 6, 22, 33

Tractrix, 119-24

Transcendental curves, G

Transverse axis, 25

Triangle, properties of, 7, 33, 50, 76, 78, 162

Trifolium, 155

Trisection of angle, 46, 127, 154, 158

Trisectrix, 46, 182: of Catalan, 46, 157; of
Maclaurin, 46, 154, 180

Trochoid, 147

Vertex, G

Watt’s curve, 162



